Abstract:
The equipment for preparing for electrostatic painting three-dimensional articles (P) with a predominantly flat extension, made from dielectric or low-conductivity material, which move on and are supported by a horizontal conveyor (T), presents the feature that the conveyor is made from an electrically insulating material, having a resistivity greater than that of the panels (P) to be painted. One or more electrodes (E, 12) are placed in isolated positions, at suitable distances from each other and from the edges of the panels, under the said panels, at least while the powdered paints electrostatically charged to an electrical potential are being fed on to them. The electrodes emit an electrical field with characteristics such that it charges the whole visible surface of the said panels, as far as their area of contact with the conveyor, to an electrical potential of opposite sign to that of the powdered paints, in such a way that the powdered paints completely and uniformly cover the said visible surface of the panels.
Abstract:
An eye covering (700) for covering an exposed surface portion of an eye, the covering comprising a body having front and rear surfaces (702a and 701a) with the rear surface being shaped to conform to said exposed surface portion (701, 702) and at least a portion of the body comprising biologically compatible polymer fibre.
Abstract:
A fluxer applies powdered flux to an object. The fluxer includes an enclosure that defines a chamber where the object is fluxed. The enclosure includes an inlet for receiving the object into the chamber prior to application of the flux and an outlet for discharging the object from the chamber after the flux has been applied. A conveyor extends through the enclosure for traversing the object into and out of the chamber. The fluxer also includes a hopper for storing the flux and an applicator in fluid communication with the hopper for applying the flux to the object. A flux recovery system is in fluid communication with the chamber to introduce and maintain a negative pressure within the chamber. As a result, excess flux is retained within the enclosure. This excess flux can then be recovered and recycled to the hopper.
Abstract:
The disclosure relates to an apparatus for electrostatically adhering grains to a planar substrate comprising: a. an electrostatic chuck having a collection surface with at least one grain collection zone for, when the planar substrate is layered on the collection surface, electrostatically directing charged grains to a corresponding surface on the planar substrate; and b. a pattern of holes through the electrostatic chuck allowing a source of low pressure to act through the electrostatic chuck to adhere the planar substrate.
Abstract:
A support for parts being electrostatically coated or painted as mounted upon an electrically charged rack wherein the support is formed of a flexible material and includes a flexible electrical conductive portion engaging the rack and part permitting the part to be charged, and a flexible non-conductive portion frictionally engaging the part. The support may include a masking cover defined on either of the portions engaging and protecting the part from painting. The support may be formed of thermoset rubber material, thermoplastics, polyvinylchloride material, or the like.
Abstract:
A support fixture for holding irregular shaped nonconductive articles for electrostatic paint spraying on a conveyer line, particularly plastic molded articles usable as components in the manufacture of automobiles, having a conductive bracket for grounded attachment to a conveyor line, a conductive frame attached to the bracket and molded into a nonconducting surface area generally conforming to the irregular shape of the articles to be painted, and having electrically conductive sheets molded into the nonconducting surface area and electrically coupled to the grounded bracket for enhancing the electrostatic forces and thereby improving paint deposition over the irregular shaped article.