Abstract:
The equipment for preparing for electrostatic painting three-dimensional articles (P) with a predominantly flat extension, made from dielectric or low-conductivity material, which move on and are supported by a horizontal conveyor (T), presents the feature that the conveyor is made from an electrically insulating material, having a resistivity greater than that of the panels (P) to be painted. One or more electrodes (E, 12) are placed in isolated positions, at suitable distances from each other and from the edges of the panels, under the said panels, at least while the powdered paints electrostatically charged to an electrical potential are being fed on to them. The electrodes emit an electrical field with characteristics such that it charges the whole visible surface of the said panels, as far as their area of contact with the conveyor, to an electrical potential of opposite sign to that of the powdered paints, in such a way that the powdered paints completely and uniformly cover the said visible surface of the panels.
Abstract:
An apparatus for actuating a droplet comprises a first conductive layer, a second conductive layer, a conductive elongate element, and a voltage source. The first conductive layer comprises a first hydrophobic surface. The second conductive layer comprises a hydrophilic surface facing the first hydrophobic surface. The second conductive layer is axially spaced from the first conductive layer to define a gap therebetween. The conductive medial element is disposed in the gap between the first and second conductive layers, and comprises a second hydrophobic surface. The voltage source communicates with the second conductive layer and the elongate element. By applying a voltage potential between the elongate element and the second conductive layer, droplets can be electrostatically actuated so as to move from the first conductive layer into contact with the second conductive layer. The apparatus is particularly useful in the synthesis of microarrays of biological, chemical, or biochemical samples.
Abstract:
An electrostatic powder coating system that comprises a booth, the lower part of which is designed in the shape of a V, and a collecting channel (13), connected to a suction device (2) underneath, the booth having two ends, each of which has a pass-through opening for the workpieces. The collecting channel (13) is covered by floor plates (17), which can be walked upon or swung up into a vertical position, and which are provided with exhaust slots (18, 19, 20) extending in the longitudinal and transverse directions, it being advantageous for the total area of the slots be a function of the discharge of exhaust air and the velocity of the exhaust air. The floor plates, which can be swung upward, improve the ability of the booth to be walked on and thus increase the ease with which the system can be serviced and operated. As a result of the way in which the exhaust slots are arranged, the powder residues can be extracted more homogeneously and uniformly and thus in optimum fashion over the entire length of the booth.
Abstract:
Plant for powder coating the surfaces of objects with polymeric powder having a melting and softening temperature below 100null C. The polymeric powder includes a polymer curable under the influence of electromagnetic radiation. Objects to be coated are prepared to retain powder charged with static electricity. The objects are then sprayed with powder charged with static electricity and thereafter heated to a surface temperature of about 100null C. thereby melting the powder retained on the surface by exposure to infrared radiation and heated air. The objects are radiated by electromagnetic radiation for curing of the powder over the surface of the objects.
Abstract:
A sheet coating apparatus including a storage tank in which a coating liquid having charged coating particles dispersed therein is contained, a development roller rotatably installed to be immersed in the coating liquid, a voltage source for applying a voltage to the development roller, a coating roller rotatably installed in a state in which it is partially immersed in the coating liquid while maintaining a predetermined development gap relative to the development roller, and a compression roller for pressing a sheet passing between the compression roller and the coating roller toward the coating roller while securely rotating with respect to the coating roller. The coating particles adhere to the surface of the coating roller at the development gap due to an electric force to then be coated on the sheet passing between the coating roller and the compression roller. The sheet coating apparatus can prevent excess coating liquid from being coated on a sheet by regulating the amount of the coating liquid coated on the sheet, thereby attaining uniform coating.
Abstract:
An apparatus for atomic layer deposition preventing mixing of a precursor gas and an input gas. From the apparatus a flow of the input gas is provided over a surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the input gas in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The input gas is dissociated by the beam producing a high flux point of use generated reactive gas species that reacts with a surface reactant formed on the surface of the workpiece by a direct flow of the precursor gas flown from the dispensing unit. The surface reactant and reactive gas species react to form a desired monolayer of a material on the surface of the workpiece.
Abstract:
There is provided a deposition system (1) for yielding substantially uniform deposition of an evaporant material onto a substrate. The deposition system (1) comprises: a source (10) for generating a coherent energy beam; a substantially planar target (60) containing the evaporant material and disposed in spaced relation to the substrate; a focusing element (30) optically coupled to the source for focusing the coherent energy beam onto the target (60); and, an actuator (40) coupled to the focusing element (30) for reversibly translating the focusing element (30) along a scanning path directed substantially parallel to a target plane defined by the target (60). The focused coherent energy beam defines an impingement spot (14) on the target (60). The impingement spot (14) is displaced responsive to the translation of the focusing element (30) along the scanning path. The focus of the coherent energy beam on the target (60) thus remains substantially preserved.
Abstract:
The method for treating the internal surface of a gas bottle includes the following steps: a) an incident laser treatment beam is introduced into a bottle through its mouth, approximately along the axis of the bottle; b) the laser beam is deflected in the bottle onto the internal surface of the bottle; c) a relative rotation between the bottle and the deflected laser beam is made approximately about the axis of the bottle; and d) a relative displacement between the bottle and the deflected laser beam is made so as to scan most of the internal surface of the bottle with the deflected laser beam. The apparatus for treating a bottle is designed to implement the steps of the method.
Abstract:
Methods and associated apparatus are disclosed for use in mounting particles on and de-mounting particles from a substrate having an array of tacky and non-tacky areas. The particles can be either electrically conducting or electrically non-conducting. Selection of electrically conducting particles is preferred. The substrate having an array of tacky and non-tacky areas can either be electrically non-conducting (e.g., a dielectric substrate) or electrically-conducting. The methods involve use of first and second electrode plates with the substrate therebetween, the plates having applied thereto a direct current potential, which potential in preferred embodiments is reversed in polarity for a number N of cycles. Methods and articles are disclosed using an electrically conductive surface adjacent the tacky and non-tacky areas to minimize static buildup on the particles and tacky and non-tacky areas.
Abstract:
In accordance with the present invention there is provided an apparatus for electrostatically dispensing small volumes of biological or chemical material from a dispensing tip or array of dispensing tips. The apparatus includes a voltage generator, a dispensing head containing the liquid to be dispensed, and an electrode that is in electrical communication with the liquid such that when a voltage pulse is applied to the electrode, the liquid is dispensed from the dispensing head onto a receptacle. The apparatus also can include an electrostatically charged counterplane and can include a guard shield. The invention also provides for means for movement of the dispensing apparatus and the receptacle relative to each other. The invention also provides methods for dispensing fluids onto a receptacle surface, including 96-, 384- and 1536-well plates.