Abstract:
The present disclosure relates to an industrial device, such as a drill bit including a thermally stable polycrystalline diamond (TSP) table coupled to a substrate via an attachment joint, with at least one attachment material located in the attachment joint. At least one of the attachment materials includes a metal or metal alloy and an additive material having a hardness higher than the metal or metal alloy or a coefficient of thermal expansion lower than that of the metal or metal alloy.
Abstract:
An apparatus for drilling underground having at least one optical fiber for transmitting light energy from a laser energy source disposed above ground to an underground drilling location and a mechanical drill bit having at least one cutting surface and forming at least one light transmission channel aligned to transmit light from the at least one optical fiber through the mechanical drill bit by way of the at least one light transmission channel.
Abstract:
A hardfacing composition (32) that includes a plurality of hard particles (54) wherein the hard particles (54) include a mode particle size distribution, one particle size distribution smaller than the mode particle size distribution, and an other particle size distribution larger than the mode particle size distribution. There is an absence of any substantial fluctuations in the particle size distribution between the mode particle size distribution and the one particle size distribution. There is an absence of any substantial fluctuations in the particle size distribution between the mode particle size distribution and the other particle size distribution.
Abstract:
Ultra-hard constructions (40) comprise a sintered diamond-bonded body (42) having a matrix of bonded-together diamond grains and a plurality of interstitial regions substantially free of a catalyst material. A metal material (56) comprising a carbide constituent is disposed on a substrate interface surface (54) of the diamond body (42). A substrate (44) is attached to the diamond-bonded body (42) through a braze joint (46). The braze joint (46) is formed from a non-active braze material that reacts with the substrate and metal material. The braze joint is formed at the melting temperature of the non-active braze material in the absence of high-pressure conditions. In an example embodiment, the non-active braze material reacts with the carbide constituent in the metal material. Example materials useful for forming the non-active braze material include those selected from Cu, Ni, Mn, Au, Pd, and combinations and alloys thereof.
Abstract:
Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
Abstract:
Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.