Abstract:
The invention concerns a reaction chamber comprising a first container (1), a second container (4) connected to a conduit (6), an outer tube (3) emerging into the container (1), an outer tube (8) emerging into the conduit. The container (1) is designed to receive a sleeve glass, and the container (4) a core glass for optical fiber. The method for using said chamber, after vacuum sealing in (3a) and (8a), and heating the chamber at a sufficient temperature for melting the glasses, the chamber being in the position represented with the tube (3) in vertical position, consists: in a 180° anti-clockwise rotation about an axis perpendicular to the figure. The sleeve glass flows into the tube (3) while the core glass remains confined in the container (4); cooling the tube (3), then returning to the original position; part of the sleeve glass, maintained in liquid form in the center of the tube (3), drops into the container (1); carrying out another 180° rotation, but clockwise. The core glass flows into the conduit (6) and drops by gravity into the empty central part of the tube (3), while the sleeve glass which has dropped again into the tube (3) and has cooled, remains congealed on the wall of the container (1). The invention thus enables preparation, in a vacuum sealed chamber containing the two glasses, a preform for optical fiber.
Abstract:
Microstructured optical fibre is fabricated using extrusion. The main design of optical fibre has a core suspended in an outer wall by a plurality of struts. A specially designed extruder die is used which comprises a central feed channel, flow diversion channels arranged to divert material radially outwards into a welding chamber formed within the die, a core forming conduit arranged to receive material by direct onward passage from the central feed channel, and a nozzle having an outer part in flow communication with the welding chamber and an inner part in flow communication with the core forming conduit, to respectively define an outer wall and core of the preform. With this design a relatively thick outer wall can be combined with thin struts (to ensure extinction of the optical mode field) and a core of any desired diameter or other thickness dimension in the case of non-circular cores. As well as glass, the extrusion process is suitable for use with polymers. The microstructured optical fibre is considered to have many potential device applications, in particular for non-linear devices, lasers and amplifiers.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
A process for producing a preform for a chalcogenide glass fiber which comprises inserting a cladding tube having contained therein a chalcogenide glass rod for core into a quartz tube having at its bottom a nozzle having an aperture smaller than the outer diameter of the cladding tube, locally heating the bottom of the quartz tube and pulling the cladding tube having contained the glass rod for core and a process for producing a chalcogenide glass fiber by heating and drawing the preform thus obtained, by which processes the devitrification of glass and the generation of bubbles in the core glass or at the core glass-cladding glass interface can be prevented and the adhesion between the core glass and the cladding glass can be improved. In particular, when the glass material for core does not contain Ge, a chalcogenide glass fiber having such a core-cladding structure that the transmission loss of the glass fiber when infrared light pass through the fiber is small and the mechanical strength is high.
Abstract:
A process for producing a preform for a chalcogenide glass fiber which comprises inserting a cladding tube having contained therein a chalcogenide glass rod for core into a quartz tube having at its bottom a nozzle having an aperture smaller than the outer diameter of the cladding tube, locally heating the bottom of the quartz tube and pulling the preform compositing said cladding tube and glass rod for core through the nozzle of the said quartz tube. Also disclosed is a process for producing a chalcogenide glass fiber by heating and drawing the preform thus obtained, by which processes the devitrification of glass and the generation of bubbles in the core glass or at the core glass-cladding glass interface can be prevented and the adhesion between the core glass and the cladding glass can be improved. In particular, when the glass material for core does not contain Ge, a chalcogenide glass fiber having such a core-cladding structure that the transmission loss of the glass fiber when infrared light pass through the fiber is small and the mechanical strength is high.
Abstract:
A process for producing a preform for a chalcogenide glass fiber which comprises inserting a cladding tube having contained therein a chalcogenide glass rod for core into a quartz tube having at its bottom a nozzle having an aperture smaller than the outer diameter of the cladding tube, locally heating the bottom of the quartz tube and pulling the preform compositing said cladding tube and glass rod for core through the nozzle of the said quartz tube. Also disclosed is a process for producing a chalcogenide glass fiber by heating and drawing the preform thus obtained, by which processes the devitrification of glass and the generation of bubbles in the core glass or at the core glass-cladding glass interface can be prevented and the adhesion between the core glass and the cladding glass can be improved. In particular, when the glass material for core does not contain Ge, a chalcogenide glass fiber having such a core-cladding structure that the transmission loss of the glass fiber when infrared light pass through the fiber is small and the mechanical strength is high.
Abstract:
A process for producing materials with optical transparency in the infrared, apt to be used as raw materials for fabricating optical devices or conductors. A chemical vapor deposition process is used to obtain high purity chalcogenides from a double-substitution reaction.