Abstract:
Methods of forming a polymeric structure having a plurality of cells therein that include contacting a polymeric material that includes a first phase and a second phase with a composition comprising carbon dioxide to form the polymeric structure having a plurality of cells therein are described. Polymeric materials and microelectronic devices formed by such methods are also described.
Abstract:
A porous polysulfone membrane and process for the preparation of porous polysulfone media suitable for use in filtration comprises blending polysulfone with a particulate solid or with said particulate solid and a second polymer, extruding the resultant blend to form an article and leaching the particulate solid and second polymer from the article.
Abstract:
A polyphenylene sulfide porous body has, on its surface, porous areas having porous structures, and non-porous areas having substantially no porous structures. Provided is a novel polyphenylene sulfide porous body that has heat resistance and chemical resistance and overcomes the trade-off between mechanical characteristics and permeation performance.
Abstract:
Provided is a separator for nonaqueous electrolyte electricity storage devices that includes an improved porous epoxy resin membrane. In the separator for nonaqueous electrolyte electricity storage devices, a ratio I/Io between a peak intensity Io of an absorption peak present at 1240 cm -1 in an infrared absorption spectrum of the porous epoxy resin membrane and a peak intensity I of an absorption peak present at 1240 cm -1 in an infrared absorption spectrum of the porous epoxy resin membrane having been subjected to an acetic anhydride treatment is 1.0 or more and 2.4 or less. The amount of active hydroxyl groups present in the porous epoxy resin membrane can be evaluated by the value of the ratio I/Io.
Abstract:
In the step of extracting and removing a porogen from a thermosetting resin sheet 1 containing the porogen, the porogen is extracted and removed by bringing the thermosetting resin sheet 1 into contact with a first liquid that has a relatively low temperature, and subsequently bringing the thermosetting resin sheet 1 into contact with a second liquid that has a relatively high temperature. Preferably, the temperatures of the first liquid and the second liquid are lower than or equal to the glass-transition temperature of the thermosetting resin sheet 1.