Abstract:
A belt for suspending and/or driving an elevator system component include one or more metallic cord tension elements extending along a length of the belt, and one or more non-metallic tension elements extending along a length of the belt. Each non-metallic tension element is formed from a non-metallic material. The one or more metallic cord tension elements and the one or more non-metallic tension elements are arrayed laterally across a lateral width of the belt. The belt may be used in an elevator system including a hoistway, a drive machine having a traction sheave coupled thereto, an elevator car movable within the hoistway. The belt is operably connected to the elevator car and interactive with the traction sheave to suspend and/or drive the elevator car along the hoistway.
Abstract:
A belt for suspending and/or driving an elevator car includes a plurality of wires arranged into a plurality of cords. The plurality of cords includes one or more inner cords located at an innermost portion of the belt relative to a lateral end of the belt and one or more outer cords located laterally outboard of the one or more inner cords. The one or more outer cords have a construction distinct from the one or more inner cords. A jacket substantially retains the plurality of cords.
Abstract:
The object of the invention is a traction sheave elevator and a rope that contains metal as a load-bearing material, such as the suspension rope of an elevator, which rope comprises at least one or more strands laid from metal wires and which rope is lubricated with a lubricant. Another object is the use of the aforementioned lubricant for lubricating the rope. The lubricant comprises at least oil and thickener, which thickener in the lubricant comprises at least 10% or more of the mass of the lubricant.
Abstract:
A high-security cable is provided, wherein the high-security cable is capable of achieving a smoothing of a work-to-break energy curve. The high-security cable is manufactured of a mixture of plastic yarns or of plastic yarns and metal wires, wherein the cable comprises a first constituent part of untwisted or twisted yarns, or untwisted or twisted yarns and metal wires, a second constituent part of doubled yarn, the doubled yarn manufactured of plastic yarns or of plastic yarns and metal wires, and a third constituent part of cord manufactured from the doubled yarns, wherein the doubled yarn is manufactured from plastic yarns or of plastic yarns and metal wires. The high-security cable can be used as a safety arrester cable, and can also be used to form a netting to serve as safety arrester netting or falling-rock protection netting.
Abstract:
A fishing net twine comprising a single first yarn and a plurality of second yarns which are orderly stranded together with the first yarn. The first yarn is a bundle of multiple filaments having a thickness of 8 to 42 denier and a monofilament having a thickness of 0.10 to 0.24 mm which are stranded together. The second yarn includes a number of monofilaments having a thickness of 0.10 to 0.24 mm.
Abstract:
A wire rope is provided having a central core strand about which are wound outer strands. Spacer strands are present in the gaps between such core strand and outer strands to assume the uniformity of such gaps. A coating, usually of a suitable thermoplastic, is extruded into such rope to provide a spacer between such core and such outer strands, and between adjacent outer strands.
Abstract:
The present invention provides a wire rope comprising an inner layer of at least four separate wire strands and an outer layer of at least eight separate wire strands, parallel laid. The strands themselves are usually of parallel lay and are usually lubricated. A thermoplastic or an elastomer usually surrounds the inner layer strands and extends between the inner layer strands and the outer layer strands and between the outer layer strands.
Abstract:
Provided is an elastomer reinforcement cord in which the problem of stress concentration at an interface between an elastomer and a metal cord is solved and the durability is thereby improved. The elastomer reinforcement cord includes metal filaments (1a) and (1b), and a polymer material (3) having a melting point or softening point of 80° C. to 160° C. The elastomer reinforcement cord has a core (11) and at least one sheath layer (12). In a region surrounded by a line connecting the centers of the metal filaments constituting the outermost sheath layer at a cross-section in a direction orthogonal to an axial direction after vulcanization, when a region occupied by other than the metal filaments is defined as a gap region, the polymer material is contained in this gap region, and a filling rate, which is a ratio of the area of the polymer material, is higher than 120%, taking the area of the gap region as 100%.