Abstract:
Provided herein is an electrodeposition apparatus for producing long polymeric threads, yarns, or ropes. A method of preparing long polymeric threads, yarns or ropes also is provided.
Abstract:
A product comprising a plurality of interlaced yarns wherein at least a first yarn having a tensile strength, having a value TS in N/tex, said first yarn containing a plurality of UHMWPE fibers having a titer, having a value T in den, wherein the ratio T/TS is at least 5 den.tex/N. The tensile strength is obtained by adjusting the drawing ratio or the UHMWPE filaments/fibers accordingly. The product shows resistance to abrasion. The product can be a rope or round slings, comprising a sheath/jacket comprising said first yarn.
Abstract:
Cable structures of security systems may include multiple subassemblies having different cut-resistant characteristics. One system includes, inter alia, a portable article, a support, and a length of a cable assembly extending between a first cable end coupled to the portable article and a second cable end coupled to the support, where the cable assembly includes a first cable subassembly extending along at least a portion of the length of the cable assembly, and a second cable subassembly extending along at least the portion of the length of the cable assembly and adjacent to the first cable subassembly, and where the first cable subassembly includes a first cut resistant characteristic and the second cable subassembly includes a second cut resistant characteristic that is different than the first cut resistant characteristic.
Abstract:
The present invention is to provide a hybrid core rope which does not require maintenance or a hybrid core rope capable of reducing a maintenance task. The hybrid core rope includes a resin solid core in which a plurality of spiral grooves is formed in the longitudinal direction on an outer peripheral surface thereof, a plurality of fiber bundles respectively spirally wound around the outer peripheral surface of the resin solid core along the plurality of spiral grooves, the fiber bundles having thickness to fill the spiral grooves, and a plurality of steel strands spirally wound around the outer peripheral surface of the resin solid core around which the fiber bundles are wound. The fiber bundles and the strands are respectively wound so as to have angles which are not parallel to each other.
Abstract:
A cord for rubber reinforcement of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) disposed around the core strand. In the core strand, the plurality of strands (A) are finally twisted, and each of the plurality of strands (A) is formed of a plurality of reinforcing fibers (A) that are primarily twisted. Each of the plurality of strands (B) is formed of a plurality of reinforcing fibers (B) that are primarily twisted, and the plurality of strands (B) are finally twisted to be disposed around the core strand. The direction of final twist of the plurality of strands (B) is the same as the direction of primary twist in at least one strand (B) selected from the plurality of strands (B). The number of primary twists in the strand (B) is greater than the number of primary twists in the strand (A), and/or the number of final twists of the strands (B) is greater than the number of final twists of the strands (A).
Abstract:
An arborist's climbing rope in which an eye splice having a splice tuck can be formed at one end includes in one embodiment a core of polypropylene, a first braided tubular sheath of nylon disposed about the core and a second braided tubular sheath of a polyester disposed about the first braided tubular sheath, the core cross-sectional diameter being in the range of 1 to 10% of the total cross-sectional diameter of the arborist's climbing rope. In forming the eye splice a portion of the core is intentionally removed near the eye splice to form a space within the first tubular sheath where the core has been removed and the splice tuck is buried in and substantially completely fills the space within the first tubular sheath where the core has been intentionally removed.
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
A cord for rubber reinforcement of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) disposed around the core strand. In the core strand, the plurality of strands (A) are finally twisted, and each of the plurality of strands (A) is formed of a plurality of reinforcing fibers (A) that are primarily twisted. Each of the plurality of strands (B) is formed of a plurality of reinforcing fibers (B) that are primarily twisted, and the plurality of strands (B) are finally twisted to be disposed around the core strand. The direction of final twist of the plurality of strands (B) is the same as the direction of primary twist in at least one strand (B) selected from the plurality of strands (B). The number of primary twists in the strand (B) is greater than the number of primary twists in the strand (A), and/or the number of final twists of the strands (B) is greater than the number of final twists of the strands (A).
Abstract:
A rope comprising a plurality of bundle groups, each of said bundle groups having a periphery and comprising a plurality of high strength fibers, at least one low coefficient of friction fiber disposed around at least a portion of the periphery of at least one of the bundle groups.
Abstract:
To minimize the cross-sectional area or the diameter of an electric line that is under tensile stress, a central fibrous element of a carbon fiber bundle is disclosed. This can be designed so it is resistant to the longitudinal entry of water.