Abstract:
A lightweight high pressure repairable piston composite tie-rod accumulator (10) that does not use a load bearing metallic liner. An exemplary accumulator (10) includes composite tie rods that sustain the axial stress induced by pressurization of the accumulator (10), while the shell (12) is designed such that it sustains the stress of pressurization in the hoop direction. The tie rods can be secured using a wedge-type tie rod retention mechanism. As a result, no pretension is applied to the tie rods and the composite shell (12) may be designed entirely for hoop stress.
Abstract:
A compressed natural gas (CNG) refueling system has banks of cylinders (56) containing CNG, a hydraulic fluid reservoir (18) containing a hydraulic fluid which does not readily mix with CNG, and reversible flow valves (26, 28, 30). Each cylinder has a fitting (70) installed in an opening at one end. The fitting contains a hydraulic fluid port (72) and a gas port (74) . The other end of each cylinder is closed. Hydraulic fluid is pumped from the reservoir into each cylinder through the hydraulic fluid port. Inside each cylinder, the hydraulic fluid directly contacts the CNG, forcing the CNG out through the gas port. When a sensor (42) detects that the cylinders are substantially drained of CNG, the reversible flow valves will reverse orientation, allowing the hydraulic fluid to flow back into the reservoir.
Abstract:
Die Erfindung betrifft ein Fahrzeug mit einem Druckgasbehälter als Fahrzeugtank, der eine gasdichte Behälterwand (2) und zwei Anschlußstutzen (3, 4) für Druckgasleitungen aufweist. Die Erfindung ist dadurch gekennzeichnet,
daß das Volumen des Druckgasbehälters (1) durch eine Trennwand in zwei Teile (6, 7) unterteilt ist, wobei jeder der beiden Teile (6, 7) jeweils durch einen der beiden Anschlußstutzen (3, 4) füllbar und entleerbar ist, daß die Trennwand die beiden Teile (6, 7) des Volumens in der Weise voneinander trennt, daß kein nennenswerter unmittelbarer Gasaustausch zwischen den beiden Teilen (6, 7) stattfindet, und daß die Trennwand innerhalb des Druckgasbehälters (1) in der Weise ortsveränderlich angeordnet ist, daß durch Änderung der Befüllung bedingte Druckunterschiede zwischen den beiden Teilen (6, 7) des Volumens durch eine Verlagerung oder Verformung der Trennwand ausgeglichen werden.
Abstract:
A pressure vessel includes: a barrel part disposed in a predefined square area and having a diameter corresponding to a length of one side of the square area; a first nozzle member disposed at one end of the barrel part; a second nozzle member disposed at an opposite end of the barrel part; and clamp rings disposed in the square area, positioned outside the barrel part, and configured to lock the first and second nozzle members to the barrel part, thereby improving spatial utilization and a degree of design freedom.
Abstract:
A storage tank 10A has a heat insulating material layer 14 formed on the outer side of a partition wall 12 that has a container shape. The inside of the storage tank 10A is divided into two storage spaces V1, V2 The first storage space V1 stores liquefied hydrogen LH2 and the second storage space V2 storing slush hydrogen SH2. A plurality of fins 18 are disposed on the partition plate 16 so as to promote heat transfer between the liquefied hydrogen LH2 and the slush hydrogen SH2 and to reduce the amount of evaporation gas from the liquefied hydrogen LH2. An escape pipe 20 is connected to the storage space V1, and the fuel supply pipes 24a, 24b are connected to the storage spaces V1, V2, respectively. The fuel supply pipes 24a, 24b are connected to a combustor 26 via the main fuel pipe 24.
Abstract:
In various embodiments, lined underground reservoirs and/or insulated pipeline vessels are utilized for storage of compressed fluid in conjunction with energy storage and recovery systems.
Abstract:
A safety apparatus for containers loaded by gas pressure, in particular the gas side (13) of hydropneumatic devices such as hydraulic accumulators (1), is characterized in that the safety apparatus has a connection device (19) that can be attached to the pressure chamber of the container in order to form a passage (25) between the gas side (13) of the container and the outside, and that a means (27) is present, which normally blocks the passage (25) and which under the influence of temperature can be transferred into a state that allows a flow path through the passage (25) to be cleared.
Abstract:
A lightweight high pressure repairable piston composite tie-rod accumulator that does not use a load bearing metallic liner. An exemplary accumulator includes composite tie rods that sustain the axial stress induced by pressurization of the accumulator, while the shell is designed such that it sustains the stress of pressurization in the hoop direction. The tie rods can be secured using a wedge-type tie rod retention mechanism. As a result, no pretension is applied to the tie rods and the composite shell may be designed entirely for hoop stress.