Abstract:
A multiple phase wavelength locker employs an etalon with multiple steps, the steps providing optical cavities having different optical lengths for use with multiple photodetectors, such that a resonance position of each etalon step is offset by a fraction of a resonance period. The stepped etalon can be employed to track the exact wavelength of a laser in a wavelength division multiplexing (WDM) system.
Abstract:
A data distribution system (10) including an information card (12) and a reader (14). The information card (12) includes visible indicia (20) on its front and stripe zones (34) and a ring zone (36) on its back. The zones (34, 36) are suitable for magnetically recording data, and optional data identifiers. The reader (14) may be a linear reader (14a) or a rotary reader (14b), and optionally may act automatically in response to reading a data identifier. If the reader (14) is a rotary reader (14b) the information card (12) may be loaded into a cartridge (16) which is loaded into the rotary reader (14b).
Abstract:
A compact wavelength monitoring and control assembly for a narrow band (i.e., laser) source is provided, comprising two narrow bandpass, wavelength selective transmission filter elements of Fabry-Perot structure through which two separate collimated beams from a laser source are directed onto two photodetectors. The spacing of the multiple transmission maxima for one etalon is chosen to match that of the desired set of frequencies to be used for locking purposes. The spacing of the transmission maxima for the second etalon is used, in combination with a dielectric filter, to generate a wavelength fiducial to denote an absolute frequency. The spacing of the second etalon is chosen to be much wider than the frequency grid etalon. A control circuit processes the simultaneously acquired signals from the two detectors as the laser wavelength is varied. The device functions as an optical wavelength discriminator in which the detectors convert optical energy to current (or voltage) for a feedback loop for controlling the laser source. Any one of a large number of discrete, predetermined wavelengths may be chosen for locking using the same device. The system is compact and may be packaged within the same temperature controlled laser assembly for maximum performance and minimum circuit board space requirements.
Abstract:
A highly accurate in-situ determination of the refractivity of an ambient atmosphere is disclosed, which determination is utilizable to enhance the accuracy of a quantity measurement. The system includes use of a refractometer exposed to an ambient atmosphere and having light directed thereto to form an optical interference fringe pattern having a dependence upon the refractivity of the ambient atmosphere. The fringe pattern is measured as a function of angle either by sequentially scanning a collimated input beam in angle while collecting and detecting the transmitted light, or by imaging (onto a multi-element detector) the angular exit space of the interferometer illuminated with a diverging input beam. The electrical output of the detector is processed to provide an output indicative of the index of refraction of the ambient atmosphere. The determined index of refraction is utilizable to enhance the accuracy of a quantity measurement, such as, for example, the distance measurement provided by a Fabry-Perot or displacement-measuring Michelson interferometer.
Abstract:
The present invention relates to an approach to locking the output wavelength of a laser that uses an etalon having non-parallel surfaces. Under this approach, the non-parallel etalon is formed from a readily available, low cost optical component, and may include an etalon with a wedged shape or with at least one curved surface. This approach offers significant advantages over the use of a planar etalon. It provides two degrees of freedom in alignment of the device, and so both the absolute wavelength and the spacing between the interference fringes can be independently adjusted. It also reduces the cost and difficulty of assembly, since it utilizes standard optical parts with wide tolerances. The invention may be used within a standard lase package. The invention also permits the laser to be tuned to a precise operating wavelength by setting various tuning signals according to values stored in memory.
Abstract:
A data distribution system (10) including an information card (12) and a reader (14). The information card (12) includes visible indicia (20) on its front and stripe zones (34) and a ring zone (36) on its back. The zones (34, 36) are suitable for magnetically recording data, and optional data identifiers. The reader (14) may be a linear reader (14a) or a rotary reader (14b), and optionally may act automatically in response to reading a data identifier. If the reader (14) is a rotary reader (14b) the information card (12) may be loaded into a cartridge (16) which is loaded into the rotary reader (14b).
Abstract:
A compact wavelength monitoring and control assembly (110) for a narrow band (i.e., laser) source is provided, comprising two narrow bandpass, wavelength selective transmission filter elements (130, 160) of Fabry-Perot structure through which two separate collimated beams from a laser source are directed onto two photodetectors (145, 175). A control circuit processes the simultaneously acquired signals from the two detectors (145, 175) as the laser wavelength is varied. The device functions as an optical wavelength discriminator in which the detectors (145, 175) convert optical energy to current (or voltage) for a feedback loop for controlling the laser source. Any one of a large number of discrete, predetermined wavelengths may be chosen for locking using the same device.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.