Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
The invention relates to a spectrometer assembly (10) containing: a radiation source (11) with a continuous spectrum; a pre-monochromator (2) for generating a spectrum with relatively little linear dispersion, from which a spectral segment can be selected, whose spectral bandwidth is less than or equal to the bandwidth of the free spectral range of the order in the echelle spectrum, for which the mean wavelength of the selected spectral segment can be measured with a maximum blaze efficiency; an echelle spectrometer (4) comprising means for wavelength calibration; an entry slit (21) on the pre-monochromator (2) and an intermediate slit assembly (3) comprising an intermediate slit and a local resolution radiation receiver (5) on the exit plane of the spectrometer for detecting wavelength spectra. The assembly is characterised in that the width of the intermediate slit (3) is greater than the monochromatic image of the entry slit generated by the pre-monochromator at the location of the intermediate slit and that means are provided for calibrating the pre-monochromator, by means of which the radiation that is reproduced in the detector of the radiation source with a continuous spectrum can be calibrated to a reference position.
Abstract:
An optical analysis system and method for determining information carried by light include a multivariate optical element disposed in the system to receive a source light from an illumination source; filtering the source light through a spectral element in the optical element analysis system; reflecting the filtered light through an inner region of a cavity in a first direction of a sample to be measured, the cavity defining a second region disposed about the inner region; focusing the reflected light proximate the sample; reflecting the focused light from the sample through the second region in a second direction of a beamsplitter, the light being reflected from the sample carrying data from the sample; splitting the sample carrying light with the beamsplitter into a first light and a second light; optically filtering the data of the first light with the multivariate optical element into an orthogonal component; directing the first light filtered by the multivariate optical element onto a first photodetector; directing the second light onto a second photodetector; and comparing the orthogonal component to information present in the second light to determine a property of the sample.
Abstract:
It is an object to provide a time-domain pulsed spectroscopy apparatus in which time-domain pulsed spectroscopy of multiple samples, states thereof, and so on can be carried out easily and in a short period of time. A time-domain pulsed spectroscopy apparatus of the present invention comprises a pulsed laser light source; a splitting unit configured to split pulsed laser light from the pulsed laser light source into excitation pulsed laser light and detection pulsed laser light; a pulsed-light emitting unit; a detector; a sample holder configured to hold the sample; and sample-unit entrance and exit optical systems configured to guide the pulsed light from the pulsed-light emitting unit to the sample and to guide to the detector pulsed light reflected from or transmitted through the sample due to the irradiation; wherein the time-domain pulsed spectroscopy apparatus further comprises: at least one optical-path-length varying unit for setting a photometric range, disposed in an incident-side optical path from the splitting unit to the pulsed-light emitting unit and/or in a detection-side optical path from the splitting unit to the detector; and at least one optical delay unit for the wave form signal measurement, disposed in the incident-side optical path from the splitting unit to the pulsed-light emitting unit and/or in the detection-side optical path from the splitting unit to the detector.
Abstract:
The present invention relates to a device for detecting the properties of a web of material transported in the longitudinal direction such as a paper web (20). The device includes a plurality of optical fibres (28) having their input areas (30) each located in the vicinity of the surface of the material web and aligned on said surface, the fibres being secured on a crossbar (26) extending across the material web. The device also includes an infrared spectrometer having the output areas (34) of the optical fibres (28) connected to its input (36) while infrared sensors are connected to the output (44) of said infrared spectrometer. The infrared spectrometer includes a holographic grating (40) for arranging the optical fibers (28) side by side and in one line at the spectrometer input (36) so that the infrared spectra of the signals emitted by the individual optical fibres (28) appear side by side in one line at the spectrometer output (44), and so that the infrared sensors at said output (44) are made in the form of a sensor matrix (46) comprising n lines and m rows of individual infrared-sensitive sensors (48), wherein the spectra from up to m optical fibres (28) can be distributed and detected into up to n spectral areas.
Abstract:
A system for predicting blood constituent values in a patient includes a remote wireless non-invasive spectral device, the remote wireless non-invasive spectral device generating a spectral scan of a body part of the patient. Also included are a remote invasive device and a central processing device. The remote invasive device generates a constituent value for the patient, while the central processing device predicts a blood constituent value for the patient based upon the spectral scan and the constituent value.
Abstract:
At the time of analytical measurement of a sample by the fluorescence measuring device or the phosphorescence measuring device, both the optical path of exciting light emitted from the light source 1 to the sample 6 and the optical path of fluorescence or phosphorescence emitted from the sample to the detection unit 10 are shut off. Both are shut off by one chopper 11, 12.
Abstract:
A multifunctional infrared spectrometer system (20) has an interferometer (27) which receives the infrared beam from a source (22) and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors (77, 88). A multi-position mirror element (64) mounted at a junction position (63) receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors (77, 88). One of the branch beam paths may include a sample holder (80) at the sample position which can index between a position at which a sample is analyzed, to a reference material position, or to a pass-through position for calibration purposes. The multi-position mirror element (64) may also be indexed to direct the beam on a branch path to a fiber optic cable (70, 76) including a probe (71). The multi-position mirror element (64) may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a sample.