Abstract:
Thermally controlled enclosures that can be used with gas analyzers are described. The enclosures incorporate one or more phase changing materials that buffer ambient and internal heat loads to reduce the power consumption demand of mechanical or electronic heating apparatus. Maintenance of gas analyzer equipment at a consistent temperature can be important to achieving stable and reproducible results. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.
Abstract:
A defect inspection apparatus enable to efficiently perform a temperature control without involving an enlarged size can be achieved.The parts constituting the defect inspection apparatus are classified into parts need temperature control and parts not to need temperature control; all the parts need temperature control are accommodated together into a temperature-controlled part accommodating section 604, and the parts not to need temperature control are arranged in a heat radiating unit 605. The temperature in the temperature-controlled part accommodating section 604 is measured by a temperature measuring instrument 603 and a control CPU 602 in a temperature control unit 601 carries out control according to the measured temperature so that the interior of the temperature-controlled part accommodating section 604 is kept at a fixed temperature. Therefore, it becomes easy to keep the fixed temperature, when compared with a case in which individual parts are temperature-controlled separately by being heated or cooled, yielding an energy saving effect.
Abstract:
A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
Abstract:
A sensor system employs a thermo-electrically cooled surface enhanced Raman (SERS) structure that is positioned in a sample chamber. Gas or vapor that may contain an analyte of interest is introduced into the sample chamber so that the analyte may come into contact with the SERS structure. The SERS structure may be cooled to facilitate condensation of selected analytes onto the SERS structure. When in contact with each other, the analyte and SERS structure may be optically stimulated by an optical excitation signal to produce a unique spectral response that may be detected by a spectroanalysis system. The spectral response then may be correlated to a specific analyte, i.e., identified.
Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.
Abstract:
An optical pH sensor and a gas sensor utilizing the pH sensor. The pH sensor includes an indicator whose absorbance is a function of the concentration of hydronium ions in a media surrounding the indicator. Light transmitted and reflected through the indicator of the sensor undergoes an absorption that is characteristic of the concentration of the hydrogen ion. The pH sensor can be used as to sense the concenration of a gas in a sample by surrounding the indicator with a liquid or liquid-containing media that changes pH as it is exposed to the gas, and separating the indicator and liquid or liquid-containing media from the gas with a membrane that is permeable to the gas to be measured. A measuring system used with the sensors transmits coherent radiation to the sensor through an optical fiber, separates the radiation returning from the sample into two wavelength bands, and digitally samples the photocurrents produced within the two wavelength bands. A microprocessor performs ratiometric calculations to measure the pH or gas concentration.
Abstract:
A beam of light falling within the range of 180 to 3,000 nanometers is transmitted through a flow cell in an optical compartment of an absorbance detector after warm up of the equipment while the eluant flows through the flow cell from a chromatographic column. The column extends upwardly from the absorbance detector into an air chamber having a volume of approximately 0.25 cubic foot formed with acrylic walls. Air flows from the absorbance detector under the power of a fan at approximately 10 cubic feet per minute upwardly through an air duct having a cross section of approximately 1.5 square inches to the top where it connects with the air chamber, the speed of the motor being adjustable until temperature varies less than one degree Celsius between the flow cell and the lower 10 centimeters of the column. Under these conditions Schlieren noise from the flow cell due to flow-induced thermo-optical effects is reduced.
Abstract:
This invention relates to a method of and system for facilitating detection of a particular predetermined gas in a scene (14) under observation. The gas in the scene is typically associated with a gas leak in equipment. To this end, the system comprises an infrared camera arrangement (12); a strobing illuminator device (22) having a strobing frequency matched to a frame rate of the camera; and a processing arrangement (24). The processing arrangement is configured to store a prior frame obtained via the infrared camera arrangement; and compare a current frame with the stored prior frame and generate an output signal in response to said comparison. The system also comprises a display device (26) configured to display an output image based at least on the output signal generated by the processing arrangement so as to facilitate detection of the particular predetermined gas, in use.
Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.