Abstract:
A device and method for identifying solid and liquid materials use near-infrared transmission spectroscopy combined with multivariate calibration methods for analysis of the spectral data. Near-infrared transmission spectroscopy is employed within either the 700-1100 nm or the 900-1700 nm wavelength range to identify solid or liquid materials and determine whether they match specific known materials. Uses include identifying solid (including powdered) and liquid materials with a fast measurement cycle time of about 2 to 15 seconds and with a method that requires no sample preparation, as well as quantitative analysis to determine the concentration of one or more chemical components in a solid or liquid sample that consists of a mixture of components. A primary application of such analysis includes detection of counterfeit drug tablets, capsules and liquid medications.
Abstract:
The invention relates to a method and an apparatus for detecting leaded pieces of glass in a single-layer material flow of objects composed predominantly of waste glass, with the objects being irradiated with substantially monochromatic UV light (3) and the fluorescent light resulting therefrom being detected.It is provided therein that the object is additionally irradiated with visible or infrared light (4); the transmission light of the visible or infrared light (4) is detected after the passage through the object; and an object is defined as containing lead if both the fluorescent light for at least one predetermined wavelength range corresponding to the fluorescence of leaded glasses is present in a predetermined intensity range and also transmission light in a predetermined intensity range with an intensity of larger zero.
Abstract:
An NIR spectroscopy fluid analyzing system using a series of LED's, each having its own preselected center wavelength, as illumination sources. These wavelengths have overlapping spectral widths, such that the measurement covers a broad spectrum. The LED's illuminate the fluid sample sequentially, and subsequently the transmission absorbance through the sample and the reflectance or scattering from the sample is measured for the wavelength range of each LED. The measurements are performed using photodetectors. The concentrations of component parts of the fluid are expressed in the form of a polynomial, which is a function of the measured transmitted and/or reflected intensities, and of empirical coefficients, which are extracted by prior statistical analysis on measured intensities obtained from a large number of test samples having known concentrations of the component. A novel sample chamber, capable of performing optical absorption measurements on a flowing sample of fluid, is described.
Abstract:
An illuminating and optical apparatus for inspecting soldering of an inspecting part on a PCB includes an illuminating and optical apparatus collecting light emitted by first and second illuminating units. The first and second illuminating units each includes lamps arranged in rows around a view axis of large and small view cameras at a predetermined angle, wherein the large and small view cameras draw sufficient light reflected by the inspecting part and obtain different view sizes of images in accordance with the sizes of the inspecting part. An illuminating and optical apparatus collects light emitted by the first and second illuminating units.
Abstract:
A method of nullreadingnull the result of an assay effected by concentrating a detectable material in a comparatively small zone of a carrier in the form of a strip, sheet or layer through the thickness of which electromagnetic radiation such as visible light is transmissible, wherein at least a portion of one face or the carrier is exposed to incident electromagnetic radiation which is substantially uniform across the entire portion, the portion including the small zone, and electromagnetic radiation emerging from the opposite face of the carrier is measured to determine the assay result. Preferably the radiation is diffuse light.
Abstract:
An engineered video inspection lighting system includes a three-dimensional array of solid-state light emitting diodes focused to an inspection area. A single high-current, low-duration pulse is applied to selected elements of the array. Light thus generated is passed through a diffuser and to a specimen. Light reflected from the specimen is received by a lens of a video camera disposed in an interior of the three-dimensional array. Data thus obtained is used to determine acceptability of the specimen in accordance with preselected standards.
Abstract:
Reflektierende bzw. geprägte Bereiche sollen für eine optische Inspektion über einen möglichst großen Winkelbereich möglichst einheitlich beleuchtet werden.
Abstract:
Vorrichtung zur optischen Detektion von Analyten in einer Probe, mit optoelektronischen Komponenten in Form von mehreren optischen Detektoren zum Empfang von Photonen und mehreren optischen Emittern zum Emittieren von Photonen, bei der mindestens drei Emitter in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und mindestens drei Detektoren in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und die Emitter und/oder die Detektoren mindestens drei unterschiedliche Wellenlängencharakteristika aufweisen.