Abstract:
A method of monitoring gas in a downhole environment is discussed which provides downhole a mid-infrared light emitting diode, operates the diode to transmit respective infrared signals on a first optical path extending from the diode through a downhole gas sample and a second optical path extending from the diode through a reference gas sample, detects the transmitted infrared signals, and determines the concentration of a component of the downhole gas sample from the detected signals.
Abstract:
A produce recognition method which determines an optimal number of candidate identifications in a candidate identification list. The method includes the steps of obtaining produce data associated with a produce item, determining distances between the produce data and reference produce data, determining confidence values from the distances, determining first confidence values which are greater than a threshold confidence value, displaying candidate identifications associated with the first confidence values, and recording an operator choice of one of the candidate identifications.
Abstract:
An optical system having a chamber for receiving an element of body fluid or tissue or environmental sample to be characterized has a light source for illuminating the chamber with light, and a spectrometer for recording a spectrum of light originating from the chamber. The light source has two separate LEDs to emit light having at least two spectral maxima of different wavelength ranges. The light from the light source is directed to the chamber. A method for determining a parameter representing a property of the element with the optical system, wherein, light having at least two spectral maxima of different wavelength ranges generated by separate LEDs is directed onto the element, a spectrum with reflected components of the light, scattered components of the light, and/or light caused by Raman scattering or fluorescence of the element is measured with the spectrometer, and the parameter is determined by evaluating the spectrum.
Abstract:
An instrument for processing and/or measuring a biological process comprises a sample processing system and an excitation source exhibiting a spectral function of output power or intensity verses wavelength of output power or intensity. The spectral function has a minima wavelength corresponding to a local minima value of the output power or intensity; a first maxima wavelength corresponding to a first local maxima of output power or intensity, the output power or intensity at the first local maxima being greater than the output power or intensity at any wavelength less than the minima wavelength; a second maxima wavelength corresponding to a second local maxima of output power or intensity, the output power or intensity at the second local maxima being greater than the output at any wavelength greater than the minima wavelength; the minima wavelength is between the first maxima wavelength and the second maxima wavelength.
Abstract:
Absorption monitor system comprising a light source and a light detector arranged so as to define an absorption detection light path there between, and a controller arranged to control the operation of the light source, wherein the light source comprises a Light Emitting Diode capable of emitting light in the UV range (UV-LED) and wherein the absorption monitor system does not comprise a reference light-detector and the controller is arranged to compensate for fluctuations in light output intensity from the UV-LED.
Abstract:
An optical filter 4 is placed in an optical path between a light source unit 1 using a deep ultraviolet LED as a light source and a sample cell 2. The optical filter 4 is a shortpass filter that allows passage of light of a main peak located within a deep ultraviolet region while blocking light of an unwanted peak located within a visible region. The temporal change in the amount of light of the unwanted peak is considerably greater than that of the main peak. The optical filter 4 blocks the former light whose amount considerably changes with time. As a result, the influence of the noise and drift originating from the LED on the detection signal obtained in a detector 3 is dramatically reduced, so that the analytical accuracy is improved.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
A light source apparatus includes a main unit, light source modules attachable to and detachable from the main unit, and storage mediums storing characteristic information of the light source modules. Each light source module includes at least one light source and a light connection part to be optically connected to the main unit. The main unit includes entrance parts to be optically connected to the light connection parts of the connected light source modules, a light combining unit to combine light entering the entrance parts, at least one exit part to cause light combined by the light combining unit to exit, and an exit light characteristic deriving unit to derive characteristic information of achievable exit light based on characteristic information of the light source modules stored in the storage mediums.
Abstract:
Using an LED element as a light source, a photometric unit including the light source, a light receiving element and other components therebetween is reduced in size. A holder 30 detachable from the device as a unit holds a light emission unit 15 formed of an LED and a light receiving element 21, and the holder is placed inside a thermostatic chamber 18 which holds a constant temperature fluid 17. Thus, the photometric unit is reduced in size.