Abstract:
Wavelength converter device for generating a converted radiation at frequency Ωg through interaction between at least one signal radiation at frequency Ωg and at least one pump radiation at frequency Ωg, with an input for the at least one signal radiation at frequency Ωg; a pump light source for generating the at least one pump radiation at frequency Ωg, an output for taking out the converted radiation at frequency Ωg, a structure for transmitting the signal radiation, the structure including one optical resonator having a non-linear material, having an optical length of at least 40*η/2, wavelength η being the wavelength of the pump radiation, and resonating at the pump, signal and converted frequencies Ωp, Ωs, and Ωg. The structure has a further optical resonator coupled in series to the optical resonator, the further optical resonator having a non-linear material, having an optical length of at least 40*η/2, wherein η is the wavelength of the pump radiation, and resonating at the pump, signal and converted Ωp, Ωs and Ωg, wherein by propagating through the structure, the pump and signal radiation generate the converted radiation by non-linear interaction within the optical resonators.
Abstract:
The invention discloses an electrochromic device of the type comprising at least one substrate and a structure of at least partly superimposed layers, where the structure comprises at least one layer of electrochromic material and a layer of electronic insulating transparent ion-conducting solid electrolytic material, and where at least one of these layers is nanostructured, i.e. has a nanostructure. Possible uses of these electrochromic devices are for controlling the energy of the electromagnetic waves reflected by the device or transmitted through the device, for example, a rear-view mirror or a motor vehicle window glass.
Abstract:
The invention discloses an electrochromic device of the type comprising at least one substrate and a structure of at least partly superimposed layers, where the structure comprises at least one layer of electrochromic material and a layer of electronic insulating transparent ion-conducting solid electrolytic material, and where at least one of these layers is nanostructured, i.e. has a nanostructure. Possible uses of these electrochromic devices are for controlling the energy of the electromagnetic waves reflected by the device or transmitted through the device, for example, a rear-view mirror or a motor vehicle window glass.
Abstract:
A diffraction grating for a waveguide or for externally incident light. The grating includes a substrate and an electrooptic structure extending over it. The electrooptic structure may include a waveguide having a propagation axis. A first and a second electrode structure are provided on either side of the electrooptic structure so that an electric field is generated in the electrooptic structure when a potential is applied to the electrodes. The first electrode structure has an interdigitated configuration defining a plurality of fingers. In use, respective potentials V0 and V0+&Dgr;V are applied to adjacent fingers. The diffraction grating induced in the electrooptic structure by the periodic electric field advantageously has a refractive index adjustable by varying V0 and &Dgr;V and a spatial periodicity adjustable by varying &Dgr;V.
Abstract:
A system for generating signals for Raman vibrational analysis, particularly for a CARS microscope or spectroscope of an external specimen, the system comprising a a laser source apt to emit at least one fundamental optical pulse in a first band of fundamental frequencies comprising at least one first (ω f1 ) and one second (ω f2 ) fundamental frequencies; a second-harmonic (SH) generating system comprising at least one nonlinear optical crystal for converting said at least one fundamental optical pulse into at least two second-harmonic optical pulses, i.e. a first second-harmonic pulse at a first second-harmonic frequency (ω p ) of the first fundamental frequency (ω f1 ) and a second second-harmonic pulse at a second second-harmonic frequency (ω s ) of the second fundamental frequency (ω f2 ), said second second-harmonic frequency being other than the first second-harmonic frequency, and a Raman vibrational analysis apparatus apt to receive said first and second second-harmonic pulses and direct them toward said specimen. According to an embodiment, the SH system comprises two nonlinear optical crystals, each including a ferroelectric crystal with periodic space-modulation of the sign of the optical susceptibility. In a different embodiment, the SH system comprises a ferroelectric crystal with aperiodic space-modulation of the sign of nonlinear optical susceptibility, with a period varying along the optical path of said at least one fundamental optical pulse, said crystal being apt to generate said first and second second-harmonic pulses.
Abstract:
The present invention relates generally to an apparatus that increases the conversion efficiency of optical parametric oscillators and also reduces overall system size and susceptibility to vibration. The first embodiment of the present invention incorporates a PPLN OPO architecture (20) which includes mirrored coatings (32, 36) on the entry surface area (22) and exit surface area (24) of a monolithic nonlinear optical medium (26). The coatings (32, 36) act as mirrors, however, the mirrors are actually affixed to the PPLN element (28, 30). In the first embodiment of the present invention, the PPLN element (26) is a dual grated element. The second embodiment of the present invention uses a single grated PPLN element.
Abstract:
The invention discloses an electrochromic device of the type comprising at least one substrate and a structure of at least partly superimposed layers, where the structure comprises at least one layer of electrochromic material and a layer of electronic insulating transparent ion-conducting solid electrolytic material, and where at least one of these layers is nanostructured, i.e. has a nanostructure. Possible uses of these electrochromic devices are for controlling the energy of the electromagnetic waves reflected by the device or transmitted through the device, for example, a rear-view mirror or a motor vehicle window glass.
Abstract:
An optical waveguide comprising at least a guiding lamina (10) of optical material bonded by direct interfacial bonding to a superstructure lamina (20) of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina. In a particular example, a periodically poled LiNbO3 planar waveguide is buried in LiTaO3 by direct interfacial bonding and precision polishing techniques and used in an optical frequency doubling system.
Abstract:
An optical waveguide comprising at least a guiding lamina (10) of optical material bonded by direct interfacial bonding to a superstructure lamina (20) of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina. In a particular example, a periodically poled LiNbO3 planar waveguide is buried in LiTaO3 by direct interfacial bonding and precision polishing techniques and used in an optical frequency doubling system.