Abstract:
Methods for fabricating refractory metal scandate nanocomposite powders with homogeneous microstructured refractory metal grains and a uniform nanosized dispersion of scandia are provided. The powders prepared by the sol-gel methods have a spherical morphology, a narrow distribution of particle sizes and a very uniform dispersion of nanosized scandia particles joined to the tungsten grains. The powder particle sizes can range from nanometers to micrometers. The powders can be pressed into porous cathode structures that can be impregnated with emissive materials to produce high current density and long life cathodes for high-power terahertz vacuum electron devices. The sol-gel fabrication methods allow control over the materials, particle size, particle composition and pore size and distribution of the cathode structure by manipulation of the process parameters.
Abstract:
The invention relates to a light-emitting device comprising an electrode with a ceramic oxide material, which is brought in to contact with a reducing agent or a precursor thereof. The reducing agent serves to bind the released oxygen and to control the performance of the light-emitting device.
Abstract:
A vacuum tube, in particular a cathode ray tube, equipped with at least one oxide cathode comprising a cathode carrier with a cathode base of a cathode metal and a cathode body with a cathode coating of an electron-emitting material that comprises an alkaline earth oxide, selected from the group formed by the oxides of calcium, strontium and 5 barium, and a sintering inhibitor.
Abstract:
A cathode ray tube provided with at least one oxide cathode comprising a cathode carrier with a cathode base of a cathode metal and a cathode coating of an electron-emitting material containing a particle-particle composite material of oxide particles of an alkaline earth oxide selected from the group formed by the oxides of calcium, strontium and barium, and oxide particles having a first grain size distribution of an oxide selected from the group formed by the oxides of scandium, yttrium and the lanthanoids, and oxide particles having a second grain size distribution of an oxide selected from the group formed by the oxides of scandium, yttrium and the lanthanoids. The invention also relates to an oxide cathode.
Abstract:
Cathode comprising a substrate (2) supporting a cathode emissive coating, comprising what is called an emissive central zone (12) and what is called a nonemissive peripheral zone (11); according to the invention: the average density and the emissive zone (12) is greater than that in said nonemissive zone (11), the average thickness in the emissive zone (12) is less than that in the nonemissive zone (11). In this way it is possible to significantly limit the drift in cut-off voltage, while still maintaining good maximum emission performance in DC mode and in pulse mode.
Abstract:
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
Abstract:
It is an object to obtain a cathode ray tube having a high resolution without decreasing electron emission property. Surface of a cathode was leveled by heating during forming a vacuum in order to oxidize a carbonate salt to an oxide as an electron emissive material, after applying a paste for printing on a metal substrate by screen printing, drying the same, and incorporating an oxide cathode in a cathode ray tube, the paste having a mixture of needle-like particles of the first group and bulk particles of the second group incorporated as an alkaline earth metal carbonate forming an electron emissive material layer.
Abstract:
A cathode for use in an electron gun includes a base metal comprising Ni as a principal component and a two-layer electron emissive material disposed on the base metal. The inner layer is comprised of an alkaline earth metal oxide and 1-30 wt. % W and may further include 0.1-5 wt. % of a rare earth metal oxide. The outer layer is comprised of an alkaline earth metal oxide and may further include 0.1-5 wt. % of a rare earth metal oxide. The outer electron emissive layer provides stability for the cathode. In the degassing and activation process, W and Ni react at high temperatures to form a Ni4W fine crystal structure. An intermediate layer, such as Ba2SiO4, is dispersed in the Ni4W fine crystal structure in operation. Free barium is produced in reactions between the various cathode components to provide a high current density for the cathode. The normalized electron emission current value of the cathode does not decrease with use, even over extended periods of operation. While W has heretofore been used as a reducing agent in impregnating cathodes as well as in the base metal, it has not heretofore been used in an outer layer of a cathode.