Abstract:
A method of operating and process for fabricating an electron source. A conductive rod is covered by an insulating layer, by dipping the rod in an insulation solution, for example. The rod is then covered by a field emitter material to form a layered conductive rod. The rod may also be covered by a second insulating material. Next, the materials are removed from the end of the rod and the insulating layers are recessed with respect to the field emitter layer so that a gap is present between the field emitter layer and the rod. The layered rod may be operated as an electron source within a vacuum tube by applying a positive bias to the rod with respect to the field emitter material and applying a higher positive bias to an anode opposite the rod in the tube. Electrons will accelerate to the charged anode and generate soft X-rays.
Abstract:
A field emission element has a gate electrode stacked on a substrate, an emitter electrode stacked on the gate electrode via an interlayer insulating layer, and an anode electrode formed on another substrate facing the emitter electrode. Further, the field emission element includes an anode pixel formed by the anode electrode and a generally rectangular fluorescent body formed thereon and a plurality of wells, each being formed in the emitter electrode and the interlayer insulating layer in a form of a narrow elongated hole. Here, the wells are disposed within a generally rectangular electron emitting area and at least a majority of the wells are arranged parallel to each other, and a length direction of the majority of the wells is substantially normal to that of the fluorescent body and the electron emitting area.
Abstract:
A field emission cathode device consisting of an electrically conducting material and with a narrow, rod-shaped geometry or a knife edge, to achieve a high amplification of the electric field strength is characterized in that the electron-emitting part of the field emission cathode at least partly has preferred cylindrical host molecules and/or compounds with host compounds and/or cylindrical atomic networks, possibly with end caps with diameters measuring in the nanometer range.
Abstract:
A cathode structure for use in field emission display (FED) devices includes four layers. A first layer consists of conducting lines supported on an insulating substrate. A second layer consists of thin non-conducting lines crossing the conducting lines. A third layer consists of a thick layer of non-conducting material with holes centered between the thin non-conducting lines of the second layer and extending over a portion of the thin non-conducting lines. A fourth layer consists of conducting lines containing holes of the same dimension as and aligned with the holes in the third layer exposing portions of the conducting lines of the first layer and of the non-conducting lines of the second layer. Emissive material is deposited on the exposed portions of the conducting lines of the first layer to produce a cathode for an FED device. The four-layer cathode structure improves emission characteristics such as current density and uniformity for planar edge emitters and surface emitters.
Abstract:
A cold cathode field emission device having an electron emission layer (14), an insulating layer and a gate electrode (12) which are laminated one on another with the insulating layer positioned between the gate electrode, and the electron emission layer (14), and further having an opening portion which penetrates through at least the insulating layer and the electron emission layer, the electron emission layer having an edge portion for emitting electrons, the edge portion being projected on a wall surface of the opening portion, and the electron emission layer being connected to a power source through a resistance layer (23).
Abstract:
A field emission device includes a non-stabilized special vector electron source having a field emission edge emitter cathode (102), a stabilizing anode (103) and a current stabilizer (104) in electrical circuit of the stabilizing anode (103), a collecting anode (105) and at least one control electrode (106) for controlling emission flow of electrons from the vector electron source to the collecting anode (105).
Abstract:
An electron emission apparatus comprising a gate emitter 6 formed as a conductive plate having an aperture 22 and an electron emitter structure 30 formed adjacent the aperture, the electron emission structure 30 having a void defining an emission surface.
Abstract:
A field emission cathode device consisting of an electrically conducting material and with a narrow, rod-shaped geometry or a knife edge, to achieve a high amplification of the electric field strength is characterized in that the electron-emitting part of the field emission cathode at least partly has preferred cylindrical host molecules and/or compounds with host compounds and/or cylindrical atomic networks, possibly with end caps with diameters measuring in the nanometer range.
Abstract:
Lateral field emission devices ("FEDs") for display elements and methods of fabrication are set forth. The FED includes a thin-film emitter oriented parallel to, and disposed above, a substrate. The FED further includes a columnar shaped anode having a first lateral surface. A phosphor layer is disposed adjacent to the first lateral surface. Specifically, the anode is oriented such that the lateral surface and adjacent phosphor layer are perpendicular to the substrate. The emitter has a tip which is spaced less than the mean free distance of an electron in air from the phosphor layer. Operationally, when a voltage potential is applied between said anode and said emitter, electrons are emitted from the tip of the emitter into the phosphor layer causing the phosphor layer to emit electromagnetic energy. Further specific details of the field emission device, fabrication method, method of operation, and associated display are set forth.
Abstract:
Lateral field emission devices ("FEDs") for display elements and methods of fabrication are set forth. The FED includes a thin-film emitter oriented parallel to, and disposed above, a substrate. The FED further includes a columnar shaped anode having a first lateral surface. A phosphor layer is disposed adjacent to the first lateral surface. Specifically, the anode is oriented such that the lateral surface and adjacent phosphor layer are perpendicular to the substrate. The emitter has a tip which is spaced less than the mean free distance of an electron in air from the phosphor layer. Operationally, when a voltage potential is applied between said anode and said emitter, electrons are emitted from the tip of the emitter into the phosphor layer causing the phosphor layer to emit electromagnetic energy. Further specific details of the field emission device, fabrication method, method of operation, and associated display are set forth.