Abstract:
An image reading apparatus includes: a light irradiating means for irradiating light to a subject having images to be read; an image forming means for making the light from the subject incident on an image plane so as to form images as erected images; and a photoelectric conversion means for converting the incident light of the erected images into image signals, wherein the image forming means is constituted of a plurality of lens arrays that have a mutually identical shape and property and are sequentially disposed, sharing common light axes, between the subject and the photoelectric conversion means, and the respective lens arrays are formed by integral molding of a plurality of lenses, and an aperture provided with light passing holes with the light axes as the center is interposed at least between the plurality of lens arrays, and areas other than the light passing holes in the aperture form light shielding areas.
Abstract:
An erecting equal-magnification lens array plate includes a stack of a plurality lens array plates built such that pairs of corresponding lenses form a coaxial lens system, where each lens array plate is formed with a plurality of convex lenses on both surfaces of the plate. The plate receives light from a substantially straight light source facing one side of the plate, and the plate forms an erect equal-magnification image of the substantially straight light source on an image plane facing the other side of the plate. The main lens arrangement direction differs from the main scanning direction of the erecting equal-magnification lens array plate. The erecting equal-magnification lens array plate is provided with a first light shielding member operative to shield light not contributing to imaging and formed in the neighborhood of a position in the intermediate plane in the erecting equal-magnification lens array plate where an inverted image of the substantially straight light source is formed, and with a second light shielding member operative to reduce the amount of light incident on at least some of the lenses at the periphery in the sub-scanning direction and provided on a lens surface facing a light source.
Abstract:
An erecting equal-magnification lens array plate includes a stack of a plurality lens array plates built such that pairs of corresponding lenses form a coaxial lens system, where each lens array plate is formed with a plurality of convex lenses on both surfaces of the plate. The plate receives light from a substantially straight light source facing one side of the plate, and the plate forms an erect equal-magnification image of the substantially straight light source on an image plane facing the other side of the plate. The main lens arrangement direction differs from the main scanning direction of the erecting equal-magnification lens array plate. The erecting equal-magnification lens array plate is provided with a first light shielding member operative to shield light not contributing to imaging and formed in the neighborhood of a position in the intermediate plane in the erecting equal-magnification lens array plate where an inverted image of the substantially straight light source is formed, and with a second light shielding member operative to reduce the amount of light incident on at least some of the lenses at the periphery in the sub-scanning direction and provided on a lens surface facing a light source.
Abstract:
An optical scanner forms an electrostatic latent image on a photosensitive member by scanning the photosensitive member with a light beam. The optical scanner includes: an incident optical system which at least comprises: a light beam emission device configured to emit a light beam; and a cylindrical lens configured to condense the light beam emitted from the light beam emission device, and a scanning optical system which at least comprises: a light deflecting device configured to reflect the light beam having passed through the cylindrical lens to deflect the light beam in a main scanning direction for scanning the photosensitive member; and a scanning lens configured to focus the light beam deflected by the light deflecting device on the photosensitive member to form an electrostatic latent image thereon. The incident optical system and the scanning optical system are divided by a light shielding wall.
Abstract:
The present invention relates to an apparatus having a light source for a transparent sheet of a scanner that includes a lamp, a reflective plate, a spreading plate and a protective plate. The light rays emitted by the lamp are used to scan a transparent sheet, the reflective plate in the arc shape reflects the light rays onto the scanning platform and there is an aperture on the predetermined position of the reflective plate to decrease the illumination for distributing uniformly the light rays. Besides, the spreading plate has a plurality of perforations to advance the light rays distributed uniformly. The protective plate made of the material pervious to light protects the components of this invention. As those described above, there are many advantages for the present invention, such as the structure is simple, the cost is low, and is much practical and can highly improve the performance of a scanner for a transparent sheet.
Abstract:
Imaging devices and methods that permit the capture of digital images of an original document sequentially illuminated by a plurality of light sources. In one aspect, a first digital image is captured using illumination from a first illumination angle, a second digital image is captured using illumination from a second illumination angle, and the first and second digital images are combined to obtain a composite digital image of the document. The obtained composite digital image is free of reflection artifacts corresponding to the first and second illumination angles.
Abstract:
Deformation of a second optical carriage (B) due to heat is large on a (C) side where an inverter (31) is attached and small on a (D) side. A mirror supporting portion inside the second optical carriage (B) supports the mirror at one point on the (C) side and at two points on the (D) side. An angle of the reflecting mirror (8) depends on two protrusions on the (D) side where thermal deformation is small, and the mirror is supported at one point on the (C) side where thermal deformation is large. Thus, even if an angle of the mirror supporting portion (C) changes, the angle of the reflecting mirror (8) is not affected. Therefore, a change in the angle of the reflecting mirror (8) can be controlled to be small when temperature of the second optical carriage (B) rises during a reading operation, and decrease in reading accuracy due to thermal deformation of the second optical carriage (B) can be suppressed.
Abstract:
A system and method are disclosed which provide a look-down digital imaging device capable of scanning a calibration area included within such look-down digital imaging device to capture image data for the calibration area and calibrate itself based on analysis of such captured image data. More specifically, a preferred embodiment includes a calibration area that is integrated internally within the look-down digital imaging device. When performing calibration in such a preferred embodiment, the scan head of the look-down digital imaging device is operable to align itself with the calibration area to allow for a scan of the calibration area (i.e., the capture of digital image data of the calibration area). In one embodiment, a look-down digital imaging device does not achieve a focused scan of the calibration area, but is capable of utilizing captured unfocused digital imaging data for calibration. In a preferred embodiment, a look-down digital imaging device achieves a focused scan of the calibration area, thereby enabling a further accurate calibration. More specifically, a preferred embodiment folds the optical path of the reflected light from the calibration area in order to have the optical path of such calibration area accurately mimic the optical path of an original to be scanned, thereby allowing for focused calibration to be achieved.
Abstract:
A stray-light attenuating device for removing stray light from a scanner. The attenuating device includes a light source, a lens, a reflecting mirror, a light sensor, a front cover plate and a back cover plate. The light source provides a beam of light for illuminating a document on the scanner. Light from the light source impinges upon the document and reflects to the reflecting mirror. The reflecting mirror deflects the reflected light to the lens. The lens focuses the reflected light onto the optical sensor to form an image. The optical sensor at least includes a plurality of connecting leads, a sensing surface and a backside. The back cover plate having an opening thereon is used for covering the backside of the optical sensor. The front cover plate having a window thereon is used for covering the sensing surface of the optical sensor.
Abstract:
A photosensor having an electrically insulating, translucent substrate; an opaque conductive layer formed on the substrate; an insulating layer formed on the conductive layer, and a semiconductive layer formed on the insulating layer for receiving light and providing a current corresponding thereto. A pair of electrodes are formed in contact with the semiconductor layer and define a light receiving window therebetween. The electrodes are formed so as to not substantially overlap the conductive layer. The conductive layer is supplied with a bias voltage corresponding to a polarity and an amount of carriers defining the current of the semiconductor layer and a voltage Va of a small absolute value during a non-reading period of the photosensor.