Abstract:
A wafer-level camera sensor package includes a semiconductor substrate with an optical sensor on a front surface. Through-silicon-vias (TSV) extend through the substrate and provide I/O contact with the sensor from the back side of the substrate. A glass cover is positioned over the front surface, and the cover and substrate are embedded in a molding compound layer (MCL), the front surface of the MCL lying coplanar with the front of the cover, and the back surface lying coplanar with the back of the substrate. Surface-mount devices, electromagnetic shielding, and through-wafer-connectors can be embedded in the MCL. A redistribution layer on the back surface of the MCL includes bottom contact pads for mounting the package, and conductive traces interconnecting the contact pads, TSVs, surface-mount devices, shielding, and through-wafer-connectors. Anisotropic conductive adhesive is positioned on the front of the MCL for physically and electrically attaching a lens array.
Abstract:
A integrated circuit die includes a chemical sensor, a thermal sensor, and a humidity sensor formed therein. The chemical sensor, thermal sensor, and humidity sensor include electrodes formed in a passivation layer of the integrated circuit die. The integrated circuit die further includes transistors formed in a monocrystaline semiconductor layer.
Abstract:
A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract translation:微型氧传感器利用氧气的顺磁特性提供快速的响应时间,低功耗,提高的精度和灵敏度以及优异的耐久性。 所公开的微型氧传感器在半导体衬底中形成的微通道内保持环境空气样品。 O 2分子响应于施加的磁场而分离,从而建立可测量的霍尔电压。 环境空气样品中存在的氧气可以从施加磁场变化的霍尔电压变化推导出来。 磁场可以由外部磁体或集成到微通道内的气体感测腔中的薄膜磁体施加。 差分传感器还包括含有非磁化控制样品的参考元件。 微型氧传感器适用于智能手机等消费类产品中的实时空气质量监控。
Abstract:
A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
Abstract:
Embodiments of the present disclosure are related to manufacturing system-in-packages at wafer-level. In particular, various embodiments are directed to adhering a first wafer to a second wafer and adhering solder balls to contact pads of the first wafer. In one embodiment, a first wafer having first and second surfaces is provided. The first wafer includes bond pads located on the first surface that are coupled to a respective semiconductor device located in the first wafer. A second wafer having an electrical component located therein is provided. A conductive adhesive is provided on at least one of the first wafer and the second wafer. Conductive balls are provided on the bond pads on the first surface of the first wafer. The conductive balls and the conductive adhesive are heated to cause the conductive balls to adhere to the bond pad and the conductive adhesive to adhere the first wafer to the second wafer.
Abstract:
A system and method for reducing warpage of a semiconductor wafer. The system includes a device for securing the semiconductor wafer in a heating area. The device includes a holding mechanism for securing an edge of the semiconductor wafer. The device further includes a pressure reducing device that reduces the pressure underneath the semiconductor device, which further secures the semiconductor device in the heating area. The heating area includes a plurality of heating and cooling zones in which the semiconductor wafer is subjected to various temperatures.
Abstract:
A method of forming a transistor is disclosed, in which gate-to-substrate leakage is addressed by forming and maintaining a conformal oxide layer overlying the transistor gate. Using the method disclosed for an n-type device, the conformal oxide layer can be formed as part of the source-drain doping process. Subsequent removal of residual phosphorous dopants from the surface of the oxide layer is accomplished without significant erosion of the oxide layer. The removal step uses a selective deglazing process that employs a hydrolytic reaction, and an acid-base neutralization reaction that includes an ammonium hydroxide component.
Abstract:
A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
Abstract:
A pick and place system with an integrated light source to partially cure a light-curable adhesives onto which components have been placed. After a light-curable adhesive in liquid or low viscosity form is applied to a location on a substrate, a pick-and-place head uses a vacuum introduced to its nozzle-like opening to pick a component and place it on to the light-curable adhesive. The pick-and-place head then transmit an appropriate light through the same nozzle-like opening to at least partially cure the adhesive. The component becomes, therefore, at least partially fixed to the substrate and will not shift as the substrate is moved.
Abstract:
A conductive paint electromagnetic interference (EMI) shield for an electronic module or device. The conductive paint is composed of metal particles suspended in a fluidic carrier. In one embodiment, the conductive paint is sprayed onto exterior surfaces of an electronic module or device from a spray gun. The sprayed conductive paint is cured to remove the fluidic carrier, leaving a metal film coated to the outside of the module or device. In one embodiment used with electronic packages in array form, grooves are cut into an encapsulation material of a module so that the shield protection includes sidewalls of the package. In another embodiment used with camera modules, masking is used to selectively shield portions of the module. In a further embodiment, the shield is electrically connected to a ground conductor of a circuit of the electronic module.