Abstract:
The present invention is a pre-aligner capable of determining the center of a wafer by casting light onto a wafer that is positioned above a charge-coupled device (CCD). The pre-aligner perfoi ns this operation by directing light emitted from a single LED simultaneously onto the wafer and the CCD. The light emitted from the LED is directed through a light guide in order to direct the light onto the wafer and CCD. A lens collimates the light exiting the light guide such that the light, as it passes the wafer's edge, is substantially perpendicular to the wafer's edge. The light guide may be removably secured to the pre-aligner housing for easy installation removal. The prealigner is capable of self-calibrate the LED.
Abstract:
The present invention is a unified spine structure that EFEM components, such as a wafer handling robot and a SMIF pod advance assembly, may mount to. The frame includes multiple vertical struts that are mounted to an upper support member and a lower support member. Structurally tying the vertical struts to the support members creates a rigid body to support the EFEM components. The vertical struts also provide a common reference that the EFEM components may align with. This eliminates the need for each EFEM component to align with respect to each other. Thus, if one EFEM component is removed it will not affect the alignment and calibration of the remaining secured EFEM components. The unified frame also creates an isolated storage area for the SMIF pod door and the port door within the environment that is isolated from the outside ambient conditions.
Abstract:
An intedgrated system is disclosed for workpiece handling and/or inspection at the front end of a tool. The system comprises a rigid member of unitary construction such as a metal plate which mounts to the front of a tool associated with a semiconductor process. The front end components, including the load port assemblies, prealigners and workpiece handling robot, are mounted to the plate to provide precise and repeatable positioning of the front end components with respect to each other.
Abstract:
A valve (40) mounted in a pod door of a SMIF pod (20) for allowing gas flow to and from the sealed pod (20) while the pod (20) is seated on a SMIF port. The valve (40) is provided to allow fluid flow to or from the pod (20) upon the valve (40) being actuated by either a standard registration pin or a specially adapted fluid flow pin (68) intended for use with the present invention.
Abstract:
A semiconductor fabrication facility (fab) configuration module is defined to virtually model physical systems and attributes of a fab. A data acquisition module is defined to interface with the physical systems of the fab and gather operational data from the physical systems. A visualizer module is defined to collect and aggregate the operational data gathered from the physical systems. The visualizer module is further defined to process the operational data into a format suitable for visual rendering. The processed operational data is displayed within a visual context of the fab in a graphical user interface controlled by the visualizer module. An analyzer module is defined to analyze data collected by the visualizer module and to resolve queries regarding fab performance. An optimizer module is defined to control systems within the fab in response to data collected by the visualizer module, data generated by the analyzer module, or a combination thereof.
Abstract:
A substrate container for storing at least one substrate is provided. The substrate container includes a housing assembly encompassing the at least one substrate, the housing assembly having a container door for access into an inner region of the housing assembly. The housing assembly includes a support structure defined along sidewalls of the housing assembly. The support structure has a plurality of edge support constraints protruding into the inner region of the housing assembly. The plurality of edge support constraints support opposing edge regions of the at least one substrate so as to cause the at least one substrate to deflect around an axis.
Abstract:
The present invention generally comprises a system for FPD material storage and transport. The FPD system may contain environmental protection, material tracking and/or workstation loading capabilities. One of the components of the system includes a transportable, sealable container. Another component of the system includes a sealable load port against which a container is docked so that the substrates may be processed.
Abstract:
A variable lot size load port assembly includes a tool interface, a port door, an advance plate, and first and second latch keys. The tool interface extends generally in a vertical dimension and has an aperture. The port door has a closed position wherein the port door at least partially occludes the aperture. The advance plate is configured to support a front opening unified pod (FOUP) and translate between a retracted position and an advanced position. The first latch key is disposed on the port door at a first elevation configured to selectively engage a corresponding latch key receptacle of a FOUP having a first selected FOUP capacity and the second latch key is disposed on the port door at a second elevation configured to selectively engage a corresponding latch key receptacle of another FOUP having a second selected FOUP capacity.
Abstract:
The present invention comprises a conveyor (100) for moving a semiconductor containers (2) throughout a fabrication facility. In one embodiment, the conveyor comprises a plurality of individually controlled conveyor zones (Z). Each conveyor zone includes a first belt (110), a second belt (112), a drive assembly (138) for rotating the first belt and the second belt at substantially the same speed. The first belt and the second belt are driven at substantially the same speed and movably support the container's bottom plate as the container moves along the conveyor. In another embodiment, the conveyor includes sensors (200) to determine, among other things, the position of the container.
Abstract:
The present invention comprises a workpiece container for storing at least one workpiece having a bottom surface and a peripheral edge. In one embodiment, a workpiece support structure is located within the container enclosure, which forms multiple vertically stacked storage shelves within the enclosure. Each storage shelf includes, in one embodiment, a first tine and a second tine for supporting the workpiece in a substantially horizontal orientation. The bottom surface and peripheral edge of a workpiece seated on a storage shelf extends beyond the outer edge of both the first tine and the second tine. An end effector according to the present invention may engage these extended portions or "grip zones" of the workpiece.