Abstract:
In one embodiment, an atomic force microscope comprises a frame, a beam coupled to the frame at a first end and a second end, a probe mounted to the beam, means for inducing relative motion between the beam and an underlying surface, and means for detecting a characteristic of the beam.
Abstract:
Methods, defect review tools, and systems for locating a defect in a defect review process are provided. One method includes acquiring one or more images and data from an inspection tool. The one or more images illustrate an area on a specimen in which a defect to be reviewed is located. The data indicates a position and features of the defect within the area. The method also includes acquiring one or more additional images of the specimen proximate the position of the defect indicated in the data using an imaging subsystem of a defect review tool. In addition, the method includes identifying a portion of the one or more additional images that corresponds to the one or more images. The method further includes determining a position of the defect within the portion of the one or more additional images using the data.
Abstract:
A dark field surface inspection tool and system are disclosed herein. The tool includes an illumination source (303) capable of scanning light (I) onto an inspection surface (301). Light scattered (S) by each inspection point is captured as image data by a photo detector array (305) arranged at a fourier plane. The images captured are adaptively filtered to remove a portion of the bright pixels from the images to generate filtered images. The filtered images are then analyzed to detect defects in the inspection surface. Methods of the invention include using die-to-die comparison to identify bright portions of scattering patterns and generate unique image filters associated with those patterns. The associated images are then filtered to generate filtered images which are then used to detect defects Also, data models of light scattering behavior can be used to generate filters.
Abstract:
Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
Abstract:
A method and apparatus for inspecting a specimen are provided. The apparatus comprises a primary illumination source, a catadioptric objective exhibiting central obscuration that directs light energy received from the primary illumination source at a substantially normal angle toward the specimen, and an optical device, such as a prism or reflective surface, positioned within the central obscuration resulting from the catadioptric objective for receiving further illumination from a secondary illumination source and diverting the further illumination to the specimen. The method comprises illuminating a surface of the specimen at a variety of angles using a primary illumination source, illuminating the surface using a secondary illumination source, the illuminating by the secondary illumination source occurring at a substantially normal angle of incidence; and imaging all reflected, scattered, and diffracted lig
Abstract:
Computer-implemented methods for performing one or more defect-related functions are provided. One method for identifying noise in inspection data includes identifying events detected in a number of sets of inspection data that is less than a predetermined number as noise. One method for binning defects includes binning the defects into groups based on defect characteristics and the sets of the inspection data in which the defects were detected. One method for selecting defects for defect analysis includes binning defects into group(s) based on proximity of the defects to each other and spatial signatures formed by the group(s). A different method for selecting defects for defect analysis includes selecting defects having the greatest diversity of defect characteristic(s) for defect analysis. One method includes classifying defects on a specimen using inspection data generated for the specimen combined with defect review data generated for the specimen.
Abstract:
Systems configured to provide illumination of a specimen during inspection are provided. One system includes catoptric elements configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The catoptric elements include positive and negative elements configured such that pupil distortions of the positive and negative elements are substantially canceled. Another system includes a dioptric element and a catoptric element. The dioptric element and the catoptric element are configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The dioptric and catoptric elements are also configured such that pupil distortions of the dioptric and catoptric elements are substantially canceled.
Abstract:
Disclosed are systems and methods for mitigating variances (e.g., critical dimension variances) on a patterned wafer are provided. In general, variances of a patterned wafer are predicted using one or more reticle fabrication and/or wafer processing models. The predicted variances are used to modify selected transparent portions of the reticle that is to be used to produce the patterned wafer. In a specific implementation, an optical beam, such as a femto-second laser, is applied to the reticle at a plurality of embedded positions, and the optical beam is configured to form specific volumes of altered optical properties within the transparent material of the reticle at the specified positions. These reticle volumes that are created at specific positions of the reticle result in varying amounts of light transmission or dose through the reticle at such specific positions so as to mitigate the identified variances on a wafer that is patterned using the modified reticle.
Abstract:
In one embodiment, a system for imaging an acquisition target or an overlay or alignment semiconductor target is disclosed. The system includes a beam generator for directing at least one incident beam having a wavelength l towards a periodic target having structures with a specific pitch p. A plurality of output beams are scattered from the periodic target in response to the at least one incident beam. The system further includes an imaging lens system for passing only a first and a second output beam from the target. The imaging system is adapted such that the angular separation between the captured beams, l, and the pitch are selected to cause the first and second output beams to form a sinusoidal image. The system also includes a sensor for imaging the sinusoidal image or images, and a controller for causing the beam generator to direct the at least one incident beam towards the periodic target or targets, and for analyzing the sinusoidal image or images. In one application the detector detects a sinusoidal image of an acquisition target with the same pitch as the designed target and the controller analyzes the pitch of the sinusoidal image compared to design data to determine whether the target has been successfully acquired. In a second application a first and second periodic target that each have a specific pitch p are imaged so that the detector detects a first sinusoidal image of the first target and a second sinusoidal image of the second target and the controller analyzes the first and second sinusoidal image to determine whether the first and second targets have an overlay or alignment error.
Abstract:
Techniques for optimizing the sensitivity of spectroscopic measurement techniques (100) with respect to certain profile variables include selecting desired measurement angles (104) since the measurement sensitivity to each variable depends, at least in part, on the measurement angles of an incident beam. The selected desired set of measurement angles includes both an azimuth angle and a polar angle (106). Optimizing the sensitivity of spectroscopic measurement techniques (100) can also reduce or eliminate measurement correlation among variables to be measured.