Abstract:
Embodiments of the invention provide a hard coat film, including a film base material and a hard coat arranged on at least one surface of the film base material, wherein the hard coat is comprised of an active energy ray-curable resin composition. The active energy ray-curable resin composition includes 100 parts by mass of (P) a urethane (meth)acrylate compound, 0.02 to 5 parts by mass of (Q) organic fine particles having an average particle size of 10 to 300 nm, and 0.0002 to 2 parts by mass of (R) an acrylic silicon leveling agent. The (R) acrylic silicon leveling agent is loaded in the active energy ray-curable resin composition in an amount of 1 part by mass or more based on 100 parts by mass of the (Q) organic fine particles.
Abstract:
A process for producing a resinous panel which is for use as at least some of the front panel of an article, the process including (A) a step in which a resin sheet having a thickness of 0.5-10 mm is fixed to a working table and (B) a step in which the resin sheet is punched out by forcing a Thomson blade into the resin sheet approximately perpendicularly thereto from the side where the surface of the resin sheet is to be the outer surface of the article, thereby obtaining the front panel, wherein (C) the Thomson blade is a double-edged blade having an edge angle of 30-60 degrees. The resin sheet has a tensile modulus of preferably 1,500 MPa or greater. Preferably, the resin sheet includes a transparent resin sheet layer and a colored resin sheet layer in this order from the surface that is to be the outer surface of the article. The colored resin sheet is one which does not break when a DuPont impact test was conducted in accordance with ASTM-D2794 in a 0° C. environment under the conditions of a height of 50 cm, an impactor diameter of 1 inch, an impactor weight of 1 Kg, and a pedestal diameter of ½ inch.
Abstract:
Embodiments provide a method for producing a film including a thermoplastic resin composition, the method including: (1) a step of subjecting a thermoplastic resin composition to preliminary heating at 100-250° C.; (2) a step of subjecting a first roller and second roller of a calender roll film-forming apparatus to pre-heating; and (3) a step of introducing the thermoplastic resin composition, which has been subjected to preliminary heating in step (1), into the clearance between the first roller and second roller, which have been pre-heated in step (2), and continuously winding a molten film of the thermoplastic resin composition on the first roller. According to at least one embodiment, the rotational speed of the first roller is higher than the rotational speed of the second roller. According to at least one embodiment, the thermoplastic resin composition contains (A) 100 parts by mass of a thermoplastic resin, (B) 1-60 parts by mass of carbon nanotubes and (C) 1-100 parts by mass of at least one type of material selected from the group consisting of acetylene black and graphite.
Abstract:
Embodiments relate to a method for manufacturing a heat-shielding film in which a heat-shielding material has been well dispersed in a polyvinyl chloride resin. According to one embodiment, the method for manufacturing the heat-shielding film includes (1) mixing a polyvinyl chloride resin composition (P) containing the polyvinyl chloride resin (A) using a blender, and (2) adding and further mixing the heat-shielding material with the mixture obtained in step (1 The heat-shielding material contains at least antimony-doped tin oxide micro-particles (B) in an amount in which the mass ratio of the polyvinyl chloride resin (A) to antimony-doped oxidized tin micro-particles (B) is 100 parts by mass to 1.5 to 15 parts by mass. The heat-shielding material is composed of antimony-doped oxidized tin micro-particles (B) alone.
Abstract:
The present invention pertains to a process for producing an article from a layered hard coat object including a hard coat layer and a transparent-resin film layer in this order from the outermost layer side, the process comprising: a step (A) in which a pressure-sensitive adhesive layer of a support having the pressure-sensitive adhesive layer on at least one surface thereof is temporarily applied to at least one surface of the layered hard coat object to obtain a temporarily support-bearing layered hard coat object; a step (B) in which at least one processing method selected from the group consisting of router processing, water-jet processing, laser processing, and punching is applied to the temporarily support-bearing layered hard coat object to cut the temporarily support-bearing layered hard coat object into a given shape, thereby obtaining a temporarily support-bearing cut article; and a step (C) in which at least one kind of energy selected from the group consisting of heat and actinic rays is applied to the temporarily support-bearing cut article to reduce the strength of tackiness between the support and the article to 2 N/2.5 cm or less.
Abstract:
Embodiments of the invention provide an electrically conductive resin composition which enables the formation of a film that has high electrical conductivity and excellent tensile elongation, bending resistance and flexibility, and is suitable for an electrode member for a storage battery. At least one embodiment provides a resin composition including (A) 100 parts by mass of a thermoplastic resin, (B) 1 to 60 parts by mass of carbon nanotabes, and (C) 1 to 60 parts by mass of acethylene black, wherein the thermoplastic resin (A) includes (A1) 30 to 80% by mass of a chlorinated polyethylene having a chlorine content of 20 to 45% by mass and (A2) 70 to 20% by mass of a polyethylene that is different from the component (A1). According to another embodiment, the thermoplastic resin (A) is (A3) a polyethylene that satisfies the following properties (p) and (q): (p) the peak top melting point on the highest temperature side in a DSC melting curve is 120° C. or higher; and (q) the ratio of melting enthalpy in a temperature range of 110° C. or lower relative to the total melting enthalpy in the DSC melting curve is 50 to 80%.
Abstract:
PURPOSE: The present invention provides a molded article which comprises a substrate whose surface is covered with a film, has good appearance, and does not deteriorate in the appearance even in severe environment where the article is actually used, such as high-temperature environment.CONSTITUTION: A molded article comprising a substrate whose surface is partially or wholly covered with a film, wherein the film has an adhesive layer, the adhesive layer is in contact with the substrate and the surface of the substrate, which surface is in contact with the adhesive layer, has a surface roughness (A) of 3 to 20 μm.
Abstract:
Provided is a thermoplastic resin composition or an adhesive coating material capable of adhering a cyclic polyolefin-based polymer with a metal or metal compound such as aluminum foil or an ethylene-vinyl alcohol copolymer with sufficient strength. The thermoplastic resin composition contains (A) 100 parts by mass of thermoplastic resin; (B) 0.05 to 5 parts by mass of one or more kinds selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid derivative; and (C) 0.01 to 3 parts by mass of organic peroxide; which component (A) contains (a1) 10 to 90% by mass cyclic polyolefin-based polymer; and (a2) 90 to 10% by mass a hydrogenated product of a block copolymer comprising a polymer block composed mainly of an aromatic vinyl compound and a random copolymer block of a conjugated diene compound and an aromatic vinyl compound (with the proviso that the total of the component (a1) and the component (a2) is 100% by mass).
Abstract:
Embodiments provide a door body for opening and closing a front part of an article body, whereby the door body includes a front panel constituting a front of the door body, a frame supporting at least a part of an outside edge of the front panel, and a back panel constituting a back of the door body. According to at least one embodiment, the frame includes a support plate extending to an inside of the article body in a substantially vertical direction, the front panel is bonded to the support plate with a double-sided pressure-sensitive adhesive film, the double-sided pressure-sensitive adhesive film extends from a leading edge of the support plate to an inside of the door body, and a radius of curvature of a front side corner of the leading edge of the support plate is 0.1 to 10 mm.
Abstract:
Embodiments provide a coating material containing: (A) 100 parts by mass of an acrylic curable resin; (B) 5-200 parts by mass of aluminum oxide particles having an average particle size of 1-100 μm; (C) 0.1-20 parts by mass of aluminum oxide fine particles having an average particle size of 1-100 nm; and (D) 1-100 parts by mass of a compound having two or more isocyanate groups per molecule. In one embodiment, the acrylic curable resin (A) includes: (a1) a structural unit derived from a hydroxy group-containing (meth)acrylic acid ester; (a2) a structural unit derived from a vinyl aromatic compound; and (a3) a structural unit derived from a (meth)acrylic acid alkyl ester. In one embodiment, the acrylic curable resin (A) may contain, in addition to the structural units (a1) and (a2): (a3-1) a structural unit derived from methyl methacrylate; and (a3-2) a structural unit derived from an aliphatic (including alicyclic) alkyl ester having 4 or more carbon atoms of a (meth)acrylic acid.