ADHESIVE FILM
    1.
    发明申请
    ADHESIVE FILM 审中-公开

    公开(公告)号:US20180072030A1

    公开(公告)日:2018-03-15

    申请号:US15559240

    申请日:2016-02-01

    Abstract: An embodiment provides an adhesive film having, in order from the surface layer side, a first hard coat, a second hard coat, a transparent resin film layer, and an adhesive layer. The first hard coat is formed from a coating that does not include inorganic particles. The second hard coat is formed from a coating that includes inorganic particles. The adhesive film satisfies the following conditions: (i) the total light transmittance is at least 85%; and (vii) the pencil hardness of the first hard coat surface is at least 5H. Another embodiment provides an adhesive film having, in order from the surface layer side, a first hard coat, a second hard coat, a transparent resin film layer, and an adhesive layer. The first hard coat is formed from a coating that does not include inorganic particles. The second hard coat is formed from a coating that includes inorganic particles. The adhesive film satisfies the following conditions: (i) the total light transmittance is at least 85%; (iv) the water contact angle at the first hard coat surface is at least 100 degrees; and (v) the water contact angle at the first hard coat surface after 20,000 reciprocal cotton rubs is at least 100 degrees.

    METHOD FOR PRODUCING MULTILAYER COATED FILM
    2.
    发明申请

    公开(公告)号:US20170120296A1

    公开(公告)日:2017-05-04

    申请号:US15128014

    申请日:2015-01-27

    Abstract: Embodiments of the invention provide a method for producing a multilayer coated film which involves obtaining a first layered body by forming, on a film substrate, a wet-coated film including a coating material (A) containing an active energy ray-curable resin which contains a first photopolymerization initiator and a second photopolymerization initiator, the reaction wavelengths of which differ from one another; and forming a pre-cured coated film including the coating material (A) in a dry-to-the-touch state by preliminarily curing the wet-coated film including the coating material (A), by irradiating the first layered body with active energy rays which include the reaction wavelength of the first photopolymerization initiator and do not include the reaction wavelength of the second photopolymerization initiator. The method further includes obtaining a second layered body by forming a wet-coated film including a coating material (B) on the pre-cured coated film including the coating material (A); and obtaining the multilayer coated film by fully curing the pre-cured coated film including the coating material (A) by irradiating the second layered body with active energy rays including the reaction wavelength of the second photopolymerization initiator.

    HARD COAT LAYERED FILM
    3.
    发明申请

    公开(公告)号:US20180372921A1

    公开(公告)日:2018-12-27

    申请号:US16060793

    申请日:2016-11-25

    Abstract: Embodiments provide a hard coat layered film having a first hard coat, a second hard coat, and a transparent resin film layer in order from an outer layer side, the first hard coat including (A) 100 parts by mass of a polyfunctional (meth)acrylate including 20% by mass or more of a tripentaerythritol acrylate, (B) 0.01-7 parts by mass of a water repellent, and (C) 0.01-10 parts by mass of a silane coupling agent, the first hard coat being formed from a coating material not including inorganic particles, and the second hard coat including (A′) 100 parts by mass of a polyfunctional (meth)acrylate and (D) 50-300 parts by mass of inorganic fine particles having an average particle diameter of 1-300 nm. According to at least one embodiment, component (A) may be a mixture of tripentaerythritol acrylate and one or more species selected from the group consisting of dipentaerythritol acrylate, monopentaerythritol acrylate, and polypentaerythritol acrylate.

    HARD COAT LAMINATED FILM
    4.
    发明申请

    公开(公告)号:US20180079194A1

    公开(公告)日:2018-03-22

    申请号:US15559405

    申请日:2016-02-16

    Abstract: A hard coat laminated film according to at least one embodiment has, from the surface layer side, a first hard coat and a transparent resin film layer. The first hard coat is formed from a coating material including: (A) 100 parts by mass of a polyfunctional (meth)acrylate; and (B) 1-100 parts by mass of an N-substituted (meth)acrylamide compound. The transparent resin film has a first hard coat forming surface which is a poly(meth)acrylic imide resin. A hard coat laminated film according to another embodiment has, from the surface layer side, a second hard coat, the first hard coat and the transparent resin film layer. The second hard coat is formed from a coating material which includes: (A) 100 parts by mass of a polyfunctional (meth)acrylate; (E) 0.01-7 parts by mass of a water repelling agent; and (F) 0.01-10 parts by mass of a silane coupling agent; without inorganic particles.

    MULTILAYER HARD COATING FILM
    5.
    发明申请

    公开(公告)号:US20180072029A1

    公开(公告)日:2018-03-15

    申请号:US15559400

    申请日:2016-02-05

    Abstract: One embodiment provides a multilayer hard coating film which sequentially includes, from the superficial layer side, a first hard coating and a resin film, and wherein: the first hard coating is formed from a coating material that contains a specific amount of (A) a polyfunctional (meth)acrylate and a specific amount of (B) a water repellent agent, while containing no inorganic particles; and the resin film includes at least one layer of (α) an acrylic resin that contains 50-95% by mole of a structural unit derived from methyl methacrylate and 50-5% by mole of a structural unit derived from vinyl cyclohexane when the total of the structural units derived from polymerizable monomers is taken as 100% by mole. Another embodiment provides a multilayer hard coating film which includes a second hard coating in addition to a first hard coating, and wherein: the first hard coating contains (C) a silane coupling agent in addition to the above-described components (A) and (B); and the second hard coating is formed from a coating material that contains a specific amount of (A) a polyfunctional (meth)acrylate and a specific amount of (D) inorganic fine particles having an average particle diameter of 1-300 nm.

    ANTI-GLARE HARD COAT LAMINATED FILM
    7.
    发明申请

    公开(公告)号:US20200348449A1

    公开(公告)日:2020-11-05

    申请号:US16930243

    申请日:2020-07-15

    Abstract: One embodiment provides a hard coat laminated film, comprising, in order from a surface layer side, a first hard coat, a second hard coat, and a transparent resin film layer, where the first hard coat is formed of a coating material including: (A) 100 parts by mass of a polyfunctional (meth)acrylate; (B) 0.01 to 7 parts by mass of a water repellent; (C) 0.01 to 10 parts by mass of a silane coupling agent; and (D) 0.1 to 10 parts by mass of resin microparticles having an average particle diameter of 0.5 to 10 μm, and containing no inorganic particles, and where the second hard coat is formed of a coating material containing inorganic particles. Another embodiment provides a hard coat laminated film having, in order from a surface layer side, a first hard coat, a second hard coat, and a resin film layer. The first hard coat includes a coating material that does not include inorganic particles. The second hard coat includes a coating material including inorganic particles. The adhesive film fulfills the conditions: (i) a total light transmission rate of at least 85%; (ii) a pencil hardness for the first hard coat surface of at least 5H; and (iii) a Y value for an XYZ color system of 1.5%-4.2%.

    TRANSPARENT RESIN LAMINATE
    9.
    发明申请

    公开(公告)号:US20180065349A1

    公开(公告)日:2018-03-08

    申请号:US15559305

    申请日:2016-02-01

    Abstract: One embodiment of the present invention is a transparent resin laminate including, from the surface layer side, a first hard coat, a second hard coat, and a transparent resin sheet layer, and in which: the first hard coat includes a coating material that does not contain inorganic particles and that contains a predetermined amount of (A) a polyfunctional (meth)acrylate, (B) a water-repelling agent, and (C) a silane coupling agent; the second hard coat includes a coating material containing a predetermined amount of (A) the polyfunctional (meth)acrylate and (D) fine inorganic particles having an average particle size of 1-300 nm; and the transparent resin sheet has a thickness of 0.2 mm or more. Another embodiment of the present invention is a transparent resin laminate including, from the surface layer side, a first hard coat, a second hard coat, and a transparent resin sheet layer, and in which: the first hard coat includes a coating material that does not contains inorganic particles; the second hard coat includes a coating material containing inorganic particles; the transparent resin sheet has a thickness of 0.2 mm or more; the total light transmittance is 80% or more; haze is 5% or less; and the yellowness index is 3 or less.

    METHOD FOR PROCESSING FILM
    10.
    发明申请

    公开(公告)号:US20170259379A1

    公开(公告)日:2017-09-14

    申请号:US15510043

    申请日:2015-08-05

    Abstract: Embodiments are directed to a method for processing a film, which includes: (A) a step wherein protective films are temporarily bonded to both surfaces of a film that is a material to be processed, thereby obtaining a film to be processed to both surfaces of which the protective films are bonded; and (B) a step wherein the film to be processed to both surfaces of which the protective films are bonded is cut using a laser having a wavelength at which the protective films have an absorbance of 50% or more. Other embodiments are directed to a method for processing a film, which includes: (A) a step wherein protective films are temporarily bonded to both surfaces of a film that is a material to be processed, thereby obtaining a film to be processed to both surfaces of which the protective films are bonded; and (B′) a step wherein the film to be processed to both surfaces of which the protective films are bonded is cut using a laser having a wavelength at which the film to be processed has an absorbance of 50% or more and the protective films have an absorbance of 50% or more.

Patent Agency Ranking