-
公开(公告)号:KR1020080042491A
公开(公告)日:2008-05-15
申请号:KR1020060111013
申请日:2006-11-10
Applicant: 재단법인대구경북과학기술원
CPC classification number: H04L29/08567 , H04L25/0236 , H04L25/03292 , H04L29/08306 , H04W8/02 , H04W84/18
Abstract: A method for recognizing a robust location by using MLE and LSE concepts is provided to minimize an error by using the LSE when there is disturbance and malicious signals and maintain the robust location recognition method with low cost by using the MLE without using a high-priced device such as a GPS(Global Positioning System), a beacon, and a fixing node. A method for recognizing a robust location comprises the following steps of: pre-setting a deployment point by a unit group by using a fixed coordinate system; distributing plural sensor nodes by unit group according to Gaussian distribution centering the set deployment point(S110); calculating a deployment point of an arbitrary point and sensor node distribution by a neighboring unit group according to a Gaussian PDF(Probability Density Function)(S120); positioning a mobile sensor node in an arbitrary area to receive sensor node information from sensor nodes distributed to a neighboring position out of the sensor nodes by a unit group; calculating the point value of the mobile sensor node through MLE(Maximum Likelihood Estimation) between Gaussian PDFs by using the sensor node information and the deployment point(S130).
Abstract translation: 提供了一种通过使用MLE和LSE概念来识别鲁棒位置的方法,以便在存在干扰和恶意信号时通过使用LSE来最小化错误,并通过使用MLE而不使用高价格维护低成本的鲁棒位置识别方法 设备,例如GPS(全球定位系统),信标和固定节点。 一种用于识别鲁棒位置的方法包括以下步骤:通过使用固定坐标系来预先设置单元组的部署点; 根据设定的部署点以高斯分布为单位分组多个传感器节点(S110); 根据高斯PDF(概率密度函数)计算相邻单位组的任意点和传感器节点分布的部署点(概率密度函数)(S120); 将移动传感器节点定位在任意区域,以便通过单元组从传感器节点分发到相邻位置的传感器节点接收传感器节点信息; 通过使用传感器节点信息和部署点,通过高斯PDF之间的MLE(最大似然估计)计算移动传感器节点的点值(S130)。