Abstract:
본 발명은 마그네슘 이차전지용 양극 재료의 제조 방법 및 이에 의하여 제조된 마그네슘 이차전지용 양극 재료에 관한 것으로서, 더욱 상세하게는 표면이 탄소로 코팅된 쉐브렐 구조의 마그네슘 이차전지용 양극재료의 제조 방법 및 이에 의하여 제조된 쉐브렐 구조의 마그네슘 이차전지용 양극재료에 관한 것이다. 본 발명에 의한 마그네슘 이차전지용 양극재료의 제조 방법은 쉐브렐 구조의 양극활물질의 표면을 탄소로 균일하게 코팅함으로써 입자의 성장을 억제하여 균일한 입자를 형성시키고, 높은 표면적을 가지게 되어 쉐브렐 구조 내로의 마그네슘 이온의 확산 속도를 높이게 되어 전기 전도성이 향상될 뿐만 아니라, 코팅된 탄소가 전하이동 네트워크를 형성하여 이와 같은 마그네슘 이차전지용 양극재료를 포함하는 전극의 구조적 안정성을 개선시키고, 마그네슘 이차 전지의 초기용량 및 고율특성 등을 향상시키게 된다.
Abstract:
The present invention relates to a positive electrode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a positive electrode active material for a lithium secondary battery in which a positive electrode material in which the surface of a nickel-rich (Ni-rich) positive electrode active material is coated with manganese phosphate is provided for improved battery characteristics, and a method for manufacturing the same. According to the present invention, the surface of the nickel-rich (Ni-rich) positive electrode active material is uniformly coated with the manganese phosphate, and thus an electrolyte side reaction is suppressed. Accordingly, a lithium secondary battery having excellent output characteristics, high-temperature life characteristics, and thermal stability can be manufactured.
Abstract:
The present invention relates to an anode material for a lithium secondary battery, coated with silicon oxide and a method for manufacturing the same. More specifically, by providing an anode material coated with silicon oxide on a Ni-rich anode material, the present invention relates to an anode material for a lithium secondary battery having remarkably enhanced thermal stability and cell performance due to the silicon compound. According to the present invention, silicon oxide is evenly coated on the surface of the Ni-rich anode material, thus enabling a user to manufacture a lithium secondary battery having excellent cycle and output properties while having an effectively improved thermal stability due to the suppressing of a negative reaction of an electrolyte.
Abstract:
본 발명은 이차전지용 양극재료 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 리튬망간인산화물 LiMnPO 4 와 나트륨망간불화인산화물 Na 2 MnPO 4 F의 복합체를 리튬이차전용 양극소재로 사용할 수 있도록 한 이차전지용 양극재료 및 이의 제조방법에 관한 것이다. 즉, 본 발명은 폴리어니언계 양극소재중 서로 다른 결정구조를 가지는 LiMnPO 4 와 Na 2 MnPO 4 F의 복합체를 단순합성후 혼합하여 제공하지 않고, 수열합성법으로 원스텝으로 제공할 수 있는 점. 그리고 카본코팅을 통한 전기전도도 향상으로 전기화학적 활성을 가지는 리튬이차전지의 양극재료를 제공할 수 있는 점 등을 달성하기 위한 이차전지용 양극재료 및 이의 제조방법을 제공하고자 한 것이다.
Abstract:
The present invention relates to a positive electrode for magnesium rechargeable batteries and magnesium rechargeable batteries comprising the same and more specifically, to a positive electrode for magnesium rechargeable batteries and magnesium rechargeable batteries comprising the same which uses polytetrafluoroethylene as a binder, and which uses an excessive amount of conductive material for the masses of both poles, so as to possess a high capacity and a long lifespan.
Abstract:
The present invention provides a cathode active material for a magnesium secondary battery and a manufacturing method thereof, wherein the cathode active material is represented by a chemical formula (Mg_xMn_1-yCo_ySiO_4 (0.5
Abstract:
PURPOSE: A manufacturing method of a positive electrode material manufactures a positive electrode material with improved lifetime and having a particle size of 20 micron or greater in order to obtain high energy density. CONSTITUTION: A manufacturing method of a positive electrode material comprises a step of manufacturing spherical cobalt hydroxide by coprecipitating an aqueous solution including a cobalt raw material, a hydroxide raw material, a hetero metal raw material for substitution, and an amine raw material (S10); and a step of manufacturing cobalt oxide substituted with heterometal by heat-treating the cobalt hydroxide. In manufacturing cobalt hydroxide, the cobalt hydroxide has the composition ratio of Co_(1-x)M_x(OH)_2 where 0.00
Abstract translation:目的:为了获得高能量密度,正极材料的制造方法制造寿命更长且粒径为20微米以上的正极材料。 构成:正极材料的制造方法包括通过共沉淀包含钴原料,氢氧化物原料,取代用异质金属原料和胺原料的水溶液来制造球形氢氧化钴的步骤(S10) ; 以及通过热处理氢氧化钴制造用异金属取代的氧化钴的步骤。 在制造氢氧化钴时,氢氧化钴的组成比为Co_(1-x)M_x(OH)2,其中0.00 <= x <= 0.10,M是Al,Mg或Ti。 氢氧化钴的平均粒度为15-30微米。 (附图标记)(AA)开始; (BB)结束; (S10)通过共沉淀包含钴原料,氢氧化物原料,用于置换的异质金属原料的水溶液和胺原料来制造高密度球形氢氧化钴; (S20)通过在500-800℃热处理氢氧化钴生产用异金属取代的高密度氧化钴; (S30)通过在900-1100℃下将氧化钴与Li 2 CO 3和Li 2 CO 3混合,生产钴酸锂,阳极材料; (S40)通过粉碎经热处理的阳极材料进行配制
Abstract:
PURPOSE: A positive electrode material for secondary batteries is provided to obtain excellent charging and discharging performance by securing a diffusion path for lithium in the positive electrode material, thereby improving electrochemical performance of secondary batteries. CONSTITUTION: A positive electrode material includes a manganese-based fluorinated phosphoric acid compound represented by chemical formula, Li_xNa_(2-x)MnPO_4F. A manufacturing method of the positive electrode material comprises a step of uniformly mixing sodium oxide or a precursor thereof, manganese oxide or a precursor thereof, phosphoric oxide or a precursor thereof, and fluoride oxide or a precursor thereof, pre-treating the mixture, and synthesizing Na_2MnPO_4F by sintering; and a step of inserting lithium into the positive electrode material and synthesizing Li_xNa_(2-x)MnPO_4F by using an ion exchange method.
Abstract:
PURPOSE: A positive active material is provided to obtain a capacity of 220mAhg^-1 or more and to improve the charging and discharging properties and high voltage performance of a lithium secondary battery. CONSTITUTION: A thickness of a positive active material has a plate with a thickness of 1-30nm and is represented by chemical formula 1, Ni_xCo_yMn_(1-x-y-z)M_z(OH). The positive active material is manufactured using the precursor. The size of a primary particle is 1-500nm and is represented by chemical formula 2, Li_wNi_xCo_yMn_(1-x-y-z)M_zO_2. In the chemical formulas, 1.2
Abstract:
PURPOSE: An anode material for lithium secondary battery is provided to be able to use cathode materials without a lithium source for making a lithium secondary battery and to increase the discharged voltage of a secondary battery. CONSTITUTION: An anode material for lithium secondary battery comprises lithium manganese hexafluoride compound which is expressed in the formula Li2MnPO4F. a method of manufacturing the anode material comprises; a step of mixing sodium oxide or a precursor of sodium oxide, manganese or a precursor of manganese, phosphorus or a precursor of phosphorus and fluoride or a precursor of fluoride using a ball mill, and heating the mixed materials to synthesize Na2MnPO4F and a step to add lithium into the synthesized materials through an ion-exchanging process to synthesize Li2MnPO4F.