Abstract:
The present invention relates to a method of synthesizing nano-sized metal and alloy nanoparticles by depositing metal and alloy nanoparticles having excellent uniformity of particle size on the surface of powder which is a parental material using a vapor deposition method, and melting the parental material by a solvent or heat, and to a production device thereof. More specifically, as an effective and inexpensive synthesizing method for solving a multiple and high-priced synthesizing method using chemical reduction reaction which is demerits of an existing method, provided are a method of synthesizing highly uniform sized metal, metal supported to alloy catalyst nanoparticles and carbon, and alloy catalyst nanoparticles and a production device thereof.
Abstract:
The present invention relates to a polymer electrolyte membrane fuel cell containing a complex catalyst in which an alloy or a mixture of phosphoric acid-doped polyimidazole based electrolyte thin film, metals, and chalcogen elements are deposited on a carbon carrier. According to the present invention, a user can utilize the polymer electrolyte membrane fuel cell with an improved tenacity, power generation efficiency, and stability in a high temperature operation, and use a simple production method of the complex catalyst included in the present invention.
Abstract:
세리아 또는 금속 도핑된 세리아 및 리튬 염, 나아가 산화 비스무스로 이루어지는 세리아계 조성물, 세리아계 복합 전해질 분말 및 이를 이용한 소결 방법 및 소결체가 제공된다. 일예로서 상기 리튬 염은 세리아계 조성물에 대하여 0 중량% 초과 5 중량% 이하로, 산화 비스무스는 0 중량% 초과 10 중량% 이하로 포함된다. 세리아계 물질에 저융점 및/또는 휘발성의 화합물들을 첨가함으로써, 소결 온도를 낮출 수 있으며, 세리아계 단독으로 사용하는 경우의 기존 소결 온도인 1500℃ 보다 훨씬 낮은 저온 예컨대 1000℃ 이하에서도 높은 복합체 소결 밀도 예컨대 95% 이상의 소결 밀도를 확보할 수 있다.
Abstract:
신규한 고분자 전해질 물질로서, 폴리벤지이미다졸에 벤족사졸 단위를 도입한 폴리(벤지이미다졸-코-벤족사졸)을 제공한다. 해당 고분자 전해질 물질은 특히 인시츄로 인산 도핑되어 제조되는 경우라도 높은 프로톤 전도도를 가지면서도 기계적 특성이 동시에 우수하다. 따라서 고분자 전해질 막 연료전지 특히 고온 고분자 전해질 막 연료전지에서 기존의 인산 도핑된 폴리벤지이미다졸을 대체할 수 있다.
Abstract:
A pulsatile flow generating apparatus includes a liquid container that contains liquid, multiple rotary movement devices that operate by interlocking with each other, and a microchannel that receives liquid from the liquid container. According to the multiple rotary movement device rotate, a pressure difference, which varies periodically, is generated between the liquid container and the microchannel and wave functional pulsatile flows are formed in the microchannel. Precise wave functional pulsatile microflows, which are not easy to achieve with general pumps while having a simple configuration and a simple manufacturing process, by applying the hydraulic head difference of fluid and controlling the rotation of the rotary movement devices based on Fourier cosine series. In particular, not only the period and amplitude of pulsatile flows can be controlled but also various types of pulsatile flows such as square waves and triangular waves can be obtained, and even two types of operation, forwarding type and back-and-forth standing type, are possible. [Reference numerals] (AA) Base point
Abstract:
A novel alkyl chain modified sulfonated polyether sulfone copolymer and a manufacturing method thereof are provided. The alkyl chain modified sulfonated polyether sulfone copolymer has high thermal stability and mechanical stability, is economic, and has low methanol penetration, excellent proton conductivity, and excellent water absorption, thereby being useful for the commercialization of fuel cells such as a polymer electrolyte membrane fuel cell or a direct methanol fuel cell by replacing conventional Nafion.