Abstract:
Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
Abstract:
A method for forming a semiconductor device structure is disclosure. The method may include, depositing an NMOS gate dielectric and a PMOS gate dielectric over a semiconductor substrate, depositing a first work function metal over the NMOS gate dielectric and over the PMOS gate dielectric, removing the first work function metal over the PMOS gate dielectric, and depositing a second work function metal over the NMOS gate dielectric and over the PMOS gate dielectric. Semiconductor device structures including desired metal gate electrodes deposited by the methods of the disclosure are also disclosed.
Abstract:
There is provided a method of forming a layer, comprising depositing a seed layer on the substrate; and depositing a bulk layer on the seed layer. Depositing the seed layer comprises supplying a first precursor comprising metal and halogen atoms to the substrate; and supplying a first reactant to the substrate. Depositing the bulk layer comprises supplying a second precursor comprising metal and halogen atoms to the seed layer; and, supplying a second reactant to the seed layer.
Abstract:
There is provided a method of forming a layer, comprising depositing a seed layer on the substrate and depositing a bulk layer on the seed layer. Depositing the seed layer comprises supplying a first precursor comprising metal and halogen atoms to the substrate; and supplying a first reactant to the substrate. Depositing the bulk layer comprises supplying a second precursor comprising metal and halogen atoms to the seed layer and supplying a second reactant to the seed layer.
Abstract:
A method for depositing a metal film onto a substrate is disclosed. In particular, the method comprises pulsing a metal halide precursor onto the substrate and pulsing a decaborane precursor onto the substrate. A reaction between the metal halide precursor and the decaborane precursor forms a metal film, specifically a metal boride.
Abstract:
Methods for forming a doped metal oxide film on a substrate by cyclical deposition are provided. In some embodiments, methods may include contacting the substrate with a first reactant comprising a metal halide source, contacting the substrate with a second reactant comprising a hydrogenated source and contacting the substrate with a third reactant comprising an oxide source. In some embodiments, related semiconductor device structures may include a doped metal oxide film formed by cyclical deposition processes.
Abstract:
Methods are provided for selectively depositing Al and N containing material on a first conductive surface of a substrate relative to a second, dielectric surface of the same substrate. In some aspects, methods of forming an Al and N containing protective layer or etch stop layer for use in integrated circuit fabrication are provided.
Abstract:
Methods are provided for selectively depositing Al and N containing material on a first conductive surface of a substrate relative to a second, dielectric surface of the same substrate. In some aspects, methods of forming an Al and N containing protective layer or etch stop layer for use in integrated circuit fabrication are provided.
Abstract:
A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
Abstract:
A method for depositing a film to form an air gap within a semiconductor device is disclosed. An exemplary method comprises pulsing a metal halide precursor onto the substrate and pulsing an oxygen precursor onto a selective deposition surface. The method can be used to form an air gap to, for example, reduce a parasitic resistance of the semiconductor device.