Abstract:
Technologies for media protection policy enforcement include a computing device having multiple operating systems and a data storage device partitioned into a number of regions. During execution of each of the operating systems, a policy enforcement module may intercept media access requests and determine whether to allow the media access requests based on platform media access policies. The media access policies may allow requests based on the identity of the executing operating system, the region of the data storage device, or the requested storage operation. Prior to loading a selected operating system, a firmware policy enforcement module may determine a region of the disk storage device to protect from the selected operating system. The firmware policy enforcement module may configure the data storage device to prevent access to that region. The media access policies may be stored in one or more firmware variables. Other embodiments are described and claimed.
Abstract:
Technologies for providing services to a non-volatile store include a computing device having a non-volatile store policy that defines a minimum amount of reserved space in the non-volatile store. The mobile computing device receives a call for services to the non-volatile store, determines useable free space in the non-volatile store based on the non-volatile store policy, and responds to the call for services based on the useable free space. Technologies for platform configuration include a computing device having a firmware environment and an operating system. The firmware environment determines information on configuration settings inaccessible to the operating system and exports the information to the operating system. The operating system determines a new configuration setting based on the exported information, and may configure the computing device at runtime. The operating system may securely pass a configuration directive to the firmware environment for configuration during boot. Other embodiments are described and claimed.
Abstract:
In one embodiment, a peripheral controller coupled to a processor can include a storage controller. This storage controller can control access to a non-volatile storage coupled to the peripheral controller. The storage may include both secure and open partitions, and the storage controller can enable access to the secure partition only when the processor is in a secure mode. In turn, during unsecure operation such as third party code execution, visibility of the secure partition can be prevented. Other embodiments are described and claimed.
Abstract:
Methods and apparatus are disclosed to manage power consumption at a graphics engine. An example method to manage power usage of a graphics engine via an application level interface includes obtaining a policy directive for the graphics engine via the application level interface, the policy directive identifying a threshold corresponding to power consumed by the graphics engine operating in a first graphics state. The example method also includes determining a power consumed by the graphics engine during operation. The example method also includes comparing the power consumed to the threshold of the policy directive, and when the threshold is met, setting the graphics engine in a second graphics state to cause the graphics engine to comply with the policy directive.
Abstract:
Computing devices, computer-readable storage media, and methods associated with providing an operating system (OS)-absent firmware sensor layer to support a boot process are disclosed herein. In embodiments, a computing device may include a processor and firmware to be operated on the processor. The firmware may include one or more modules and a sensor layer. The sensor layer may be configured to receive, in the OS-absent environment, sensor data produced by a plurality of sensors. The sensor layer may be further configured to selectively provide the sensor data to the one or more modules via an interface of the sensor layer that abstracts the plurality of sensors. Other embodiments may be described and/or claimed.
Abstract:
Technologies for verifying hardware components of a computing device include retrieving platform identification data of the computing device, wherein the platform identification data is indicative of one or more reference hardware components of the computing device, accessing hardware component identification data from one or more dual-headed identification devices of the computing device, and comparing the platform identification data to the hardware component identification data to determine whether a hardware component of the computing device has been modified. Each of the one or more dual-headed identification devices is secured to a corresponding hardware component of the computing device, includes identification data indicative of an identity of the corresponding hardware component of the computing device, and is capable of wired and wireless communication.
Abstract:
Embodiments related to hardware configuration reporting and arbitration are disclosed herein. For example, an apparatus for hardware configuration reporting may include: a processing device having a trusted execution environment (TEE) and a non-trusted execution environment (non-TEE); request service logic, stored in the memory, to operate within the TEE to receive an indication of a request from arbiter logic, wherein the request represents a hardware configuration register; and reporting logic, stored in the memory, to operate within the TEE and to report an indicator of a value of the hardware configuration register represented by the request to the arbiter logic. Other embodiments may be disclosed and/or claimed.