Abstract:
The present disclosure relates to a new fluid filter system including, but not limited to, structure for enabling a filter cartridge to be installed and removed from a manifold with a straight line push/pull motion, an innovative latching mechanism and an innovative water manifold, the latching mechanism providing a unique mechanism interface between an innovative manifold and a filter cartridge, the latching mechanism providing a compact and simple mechanism between the innovative manifold and the filter cartridge that significantly reduces the installation and removal force previously found with fluid filtration cartridges by including a low force filter cartridge installation and removal mechanism for utilization by the end consumer and the manifold assembly includes an inlet and an outlet port, the manifold assembly having structure for maintaining a substantially constant volumetric cavity of the fluid filtration system that contains fluid during installation and operation of the filter therein and removal of the filter therefrom and that has an automatic shut-off system, as the inlet water pressure increases past a predetermined desired maximum system operating pressure, the inlet water will automatically be shut-off, i.e., will not flow into (or out of) the filter cartridge.
Abstract:
A filter arrangement for liquids has a filter housing and a functional carrier arranged inside the filter housing. A cylindrical filter element is inserted axially into the filter housing and defines an unfiltered side and a filtered side inside the filter housing. A non-return diaphragm is secured within the filter housing, wherein the non-return diaphragm is arranged on the functional carrier so as to effect an axial and/or radial sealing action of the unfiltered side relative to the filtered side of the filter arrangement.
Abstract:
The present disclosure relates to a new fluid filter system including, but not limited to, structure for enabling a filter cartridge to be installed and removed from a manifold with a straight line push/pull motion, an innovative latching mechanism and an innovative water manifold, the latching mechanism providing a unique mechanism interface between an innovative manifold and a filter cartridge, the latching mechanism providing a compact and simple mechanism between the innovative manifold and the filter cartridge that significantly reduces the installation and removal force previously found with fluid filtration cartridges by including a low force filter cartridge installation and removal mechanism for utilization by the end consumer and the manifold assembly includes an inlet and an outlet port, the manifold assembly having structure for maintaining a substantially constant volumetric cavity of the fluid filtration system that contains fluid during installation and operation of the filter therein and removal of the filter therefrom and that has an automatic shut-off system, as the inlet water pressure increases past a predetermined desired maximum system operating pressure, the inlet water will automatically be shut-off, i.e., will not flow into (or out of) the filter cartridge.
Abstract:
The method of cleaning porous ceramic filters with a backwashing apparatus comprising an accelerating circulation path and a unit for mixing accelerated water with high-pressure air can be implemented with compact equipment to achieve efficient cleaning. The pool water purifying apparatus and system that adopt this method of cleaning porous ceramic filters comprise a filtering system that uses the ceramic filters, a disinfecting unit and an adsorbing unit and, optionally, an ultrafiltration unit as an additional filtering unit, and are capable of removing not only bacteria but also viruses so that the water purified by this apparatus and system may be as clean as potable water. Such an extremely high efficiency of water purification achieved by the apparatus and system can be maintained over a prolonged period since both the filtering and adsorption means can be cleaned by backwashing. The purifying apparatus is compact but it can be made further compact and allows for simpler installation work if the individual units of purification are integrated into a unitary assembly. The purifying system permits the water in a plurality of pools having different water temperatures to be purified efficiently with a single unit of the purifying apparatus.
Abstract:
The method of cleaning porous ceramic filters with a backwashing apparatus comprising an accelerating circulation path and a unit for mixing accelerated water with high-pressure air can be implemented with compact equipment to achieve efficient cleaning. The pool water purifying apparatus and system that adopt this method of cleaning porous ceramic filters comprise a filtering means that uses the ceramic filters, a disinfecting means and an adsorbing means and, optionally, an ultrafiltration means as an additional filtering means, and are capable of removing not only bacteria but also viruses so that the water purified by this apparatus and system may be as clean as potable water. Such an extremely high efficiency of water purification achieved by the apparatus and system can be maintained over a prolonged period since both the filtering and adsorption means can be cleaned by backwashing. The purifying apparatus is compact but it can be made further compact and allows for simpler installation work if the individual means of purification are integrated into a unitary assembly. The purifying system permits the water in a plurality of pools having different water temperatures to be purified efficiently with a single unit of the purifying apparatus.
Abstract:
The present disclosure relates to a new fluid filter system including, but not limited to, structure for enabling a filter cartridge to be installed and removed from a manifold with a straight line push/pull motion, an innovative latching mechanism and an innovative water manifold, the latching mechanism providing a unique mechanism interface between an innovative manifold and a filter cartridge, the latching mechanism providing a compact and simple mechanism between the innovative manifold and the filter cartridge that significantly reduces the installation and removal force previously found with fluid filtration cartridges by including a low force filter cartridge installation and removal mechanism for utilization by the end consumer and the manifold assembly includes an inlet and an outlet port, the manifold assembly having structure for maintaining a substantially constant volumetric cavity of the fluid filtration system that contains fluid during installation and operation of the filter therein and removal of the filter therefrom and that has an automatic shut-off system, as the inlet water pressure increases past a predetermined desired maximum system operating pressure, the inlet water will automatically be shut-of, i.e., will not flow into (or out of) the filter cartridge.