Abstract:
A strong anion exchange composition useful in monophosphate nucleotide isomer separations is comprised of an inert porous particle having a silyl alkyl ammonium compound fixedly attached by a covalent silicon-oxygen-silicon bond to the surface thereof. A process for synthesizing the strong anion exchange composition in an aqueous solvent is disclosed together with methods for separation of monophosphate nucleotide isomers, highly phophorylated nucleotides and aldopentose carbohydrates using a column packed with this strong anion exchange composition.
Abstract:
An ion exchange process for the recovery of uranium from a pregnant lixiviant employed in uranium leaching operations in which the lixiviant contains chloride ions inhibiting the adsorption of uranyl ions. The ion exchange resin employed to adsorb uranium from the lixiviant has cationic adsorption sites provided by quaternary ammonium groups having a hydroxyalkyl group as a quaternizing substituent. Through the use of a resin of this type, the resin loading in the presence of chloride ions is materially increased.
Abstract:
Ion retardation resins particularly useful for desalting caustic solutions are prepared by employing ion exchange resins consisting essentially of a mixture of a reticular, insoluble, cross-linked styrene/divinylbenzene copolymer with an entrapped non-leachable polymer of acrylic acid contained therein and where the amount of carboxylic acid groups on the polyacrylic acid are in substantial excess over the amount needed to react with all the quaternary ammonium groups which are nuclear substituted on the styrene copolymer chains.
Abstract:
Certain anion exchange resins are used for the removal of free fatty acids from water immiscible fluids. This anion exchange system can function without the necessity of organic solvents and with the resin in a hydrous state.
Abstract:
Hydrolyzable, non-aromatic, nitroso- or nitro-substituted explosive compos are removed from water by adsorption of the explosive on a strongly basic anion exchange resin, and by chemical interaction of the adsorbed explosive with the anion exchange resin to produce relatively non-toxic products.
Abstract:
An improvement in processes for recovering aluminum from alunite ore which processes include roasting the ore to remove water of hydration, removing sulfur and potassium compounds from the roasted ore by a procedure including a final leaching step resulting in a residue and a solution containing potassium sulfate, effecting partial recovery of potassium sulfate from the solution by crystallization with some potassium sulfate being bled off from the mother liquor, converting aluminum values in the residue to alkali metal aluminates by digesting the residue with alkali metal hydroxide including a substantial amount of sodium hydroxide, removing silicon from the alkali metal aluminates leaving a waste desilication product, recovering aluminum values from the desilicated aluminates by precipitation, circulating the mother liquor from the precipitation step to digestion as contaminated sodium hydroxide is bled off, the improvement which comprises enhancing the economics of the overall process by introducing therein an ion exchange procedure in which potassium hydroxide for the first leaching step is produced through ion exchange by use of potassium sulfate and sodium hydroxide, a further improvement being the use of the desilication product as the ion exchange agent.