Abstract:
An apparatus for recovering uranium and/or related values which include means for protecting ion-exchange resins in the recovery operation from oxidative degradation due to contact with hydrogen peroxide. A guard chamber is positioned in the elution circuit so that barren eluant, after it is stripped of its uranium and/or related values by treatment with hydrogen peroxide, will flow through the chamber. The guard chamber contains catalytic material, e.g. activated carbon, which decomposes hydrogen peroxide upon contact into water and oxygen. The barren eluant, after it passes through the catalytic material, is used to make up fresh eluant for reuse in the recovery method without the risk of the fresh eluant causing oxidative degradation of the resins.
Abstract:
Process for the recovery of uranium from a pregnant lixiviant employed in uranium leaching operations in which the uranium is concentrated by ion exchange resin. The ion exchange resin is eluted with an eluant containing 0.05-0.5 molar ammonium carbonate. The eluant also contains a base such as ammonium hydroxide in an amount sufficient to increase the pH to a value within the range of 9.0-11.0, thus increasing the carbonate/bicarbonate ratio. This enables the use of a relatively small quantity of ammonium carbonate to provide the desired carbonate ion concentration during the elution step.
Abstract:
Process for the stabilization of formation clays by the use of aluminum in the in-situ leaching of uranium or the restoration of contaminated formations. The aluminum is added to a lixiviant having a pH in the range of 6-10 or to a restoration fluid having a pH of at least 6 in an amount effective for the stabilization of clays.
Abstract:
An ion exchange process for the recovery of uranium from a pregnant lixiviant employed in uranium leaching operations in which the lixiviant contains chloride ions inhibiting the adsorption of uranyl ions. The ion exchange resin employed to adsorb uranium from the lixiviant has cationic adsorption sites provided by quaternary ammonium groups having a hydroxyalkyl group as a quaternizing substituent. Through the use of a resin of this type, the resin loading in the presence of chloride ions is materially increased.
Abstract:
Process for the in-situ leaching of uranium from a subterranean ore deposit comprising introducing into the deposit an aqueous lixiviant formulated from a dilute sulfuric acid solution which also contains carbon dioxide. The lixiviant has a pH within the range of 1.0-2.5. The lixiviant may also contain an alkali metal sulfate such as sodium sulfate. The process is particularly applicable to subterranean deposits containing uranium associated with carbonaceous material.
Abstract:
Process for the in-situ leaching of uranium from a subterranean ore deposit employing a lixiviant containing an oxidizing agent, sulfuric acid, and carbon dioxide. Prior to the injection of the lixiviant, an aqueous solution of sulfuric acid and oxidizing agent is injected into the deposit in an amount of at least 1 pore volume. The initially injected acid solution is substantially free of carbon dioxide. The process is particularly applicable to subterranean deposits containing uranium associated with carbonaceous material.
Abstract:
A method of treating a subterranean formation which has undergone an in situ leaching operation which utilzed an ammonium solution as the lixiviant. In such a leach operation, ammonium ions will exchange into the clay in the formation and will present a threat of contamination to any ground waters that may be present in the formation. The present method involves flushing the formation with a halogenated restoration fluid, e.g., chlorinated water having a halogen therein which reacts with ammonia within the formation to decompose the ammonia to nitrogen. The halogenated restoration fluid can be continuously injected or it can be injected as a slug followed by a relatively halogen-free solution to complete the operation. The ammonia concentration of the produced fluids is monitored and when it drops below a desired value, the method is complete.
Abstract:
Method and apparatus for mixing a gaseous oxidant (e.g., oxygen) and a lixiviant (e.g., an aqueous carbonate solution) at a downhole location in a well before the oxygen-saturated lixiviant is injected into a formation to be leached. The invention involves establishing a mixing zone in the well by positioning an orifice plate in the well at the downhole location. Lixiviant as it is flowed down the well passes through a restrictive opening in the plate causing a substantial increase in the flow velocity of the lixiviant. At the same time, gaseous oxidant is supplied to a point adjacent the opening in the plate and due to the increased velocity of the lixiviant flowing through the orifice, the oxidant is trapped to form a gas pocket below the orifice. Lixiviant flows through the gas pocket and becomes saturated with the gaseous oxidant.
Abstract:
Ion exchange process for the recovery of uranium from a pregnant carbonate lixiviant employed in uranium leaching operations in which the lixiviant is passed over a precipitation inducing anionic ion exchange resin under conditions to load the resin predominantly with non-exchangeable uranium. Non-exchangeable uranium is then recovered from the resin by eluting the resin with an aqueous acid solution having a pH no greater than 2. The process is useful in those applications in which the lixiviant contains chloride ions which inhibit the adsorption of uranyl ions.
Abstract:
A method for recovering uranium and/or related values which include means for protecting ion-exchange resins in the recovery operation from oxidative degradation due to contact with hydrogen peroxide. A guard chamber is positioned in the elution circuit so that barren eluant, after it is stripped of its uranium and/or related values by treatment with hydrogen peroxide, will flow through the chamber. The guard chamber contains catalytic material, e.g. activated carbon, which decomposes hydrogen peroxide upon contact into water and oxygen. The barren eluant, after it passes through the catalytic material, is used to make up fresh eluant for reuse in the recovery method without the risk of the fresh eluant causing oxidative degradation of the resins.