Abstract:
PURPOSE: A welding method of a microwave is provided to successively weld a heating plastic film and the textile material. CONSTITUTION: The welding method of a heating plastic sheet material with a microwave is formed by the steps of: providing the external force to interlock a hone with an anvil while providing a sheet material which will be welded through a welding bar having a hone resonated with the microwave frequency and an anvil placed to the opposite side; and providing a first signal corresponding to a specific energy density given to the sheet material and a second signal responding to the feed speed of the material passing the welding bar when welding the sheet material on the welding bar.
Abstract:
The present invention relates to a method for determining at least one physical characteristic value of an electromechanical oscillatory system, which comprises a piezoelectric element and at least one additional element coupled, with respect to oscillation, to the piezoelectric element, the piezoelectric element having an electrode and a counter electrode. The method comprises the following steps: (a) applying an electrical alternating voltage between the electrode and the counter electrode for the duration of an excitation interval in order to induce mechanical oscillation of the oscillatory system or of a sub-system of the oscillatory system, so that after the excitation interval has expired, the oscillatory system or the sub-system performs a free oscillation without excitation, (b) after the end of the excitation and during the free oscillation of the oscillatory system or of the sub-system without excitation: (i) measuring a time curve of a voltage U between the electrode and the counter electrode, or (ii) short-circuiting the electrode and the counter electrode with a line and measuring a time curve of a current I through the line, and (c) determining the at least one physical characteristic value of the electromechanical oscillatory system from the time curve of the voltage U, which time curve was measured in step b) i), or the time curve of the current I, which time curve was measured in step b) ii).
Abstract:
A resonance method for a vibration system for resonant vibration of an excitation unit having a vibrating mass includes detecting a deflection of the vibrating mass, differentiating the deflection to form a velocity of the vibrating mass; generating from the deflection and the velocity a mechanical phase position; forming from the mechanical phase position a corrected phase position by using a correction value; forming, based on the corrected phase position, an electrical angular frequency with a P-regulation; integrating the electrical angular frequency to determine an electrical phase position; forming from the electrical phase position a correction factor by using a trigonometric function; and applying the correction factor to an excitation setpoint value to generate a corrected excitation setpoint value. Also disclosed are a converter, an excitation unit having the converter, and a vibration system having the excitation unit and the vibrating mass.
Abstract:
A method for testing the integrity of a stack during ultrasonic welding, includes the steps of: (i) ultrasonically welding two or more work pieces with a stack, the stack including a convertor and a horn; (ii) measuring a frequency profile based on a vibration of the horn during the welding step; and (iii) comparing the measured frequency profile to a standard frequency profile to obtain an error rate, the error rate being indicative of a difference between the measured frequency profile and the standard frequency profile. A system employing the aforementioned method is also provided.
Abstract:
The present invention relates to a device for the ultrasonic processing of materials, which has an ultrasonic processing system, which comprises: an ultrasound generator, a converter (12), a sonotrode (16), and a counter tool (18); wherein the sonotrode (16) and/or the counter tool (18) has a substantially cylindrical sealing surface having at least one elevation (45) and can be rotated such that, during the processing, the elevation (45) rotates about the axis of rotation and comes in contact with the material web (20) during a sealing time, wherein a control apparatus (24) is provided for the ultrasound generator, to which control apparatus a feedback variable from the ultrasound processing system is fed and which control apparatus determines a manipulated variable therefrom and feeds said manipulated variable to the ultrasound generator, wherein a process variable from the processing process is determined and is linked to the manipulated variable determined by the control apparatus (24) before the feeding to the ultrasound generator. In order to provide an improved device for the ultrasonic processing of materials having an ultrasonic processing system, a trigger apparatus (44) is provided, which determines the position of the elevation (45) and is designed to permit or prevent the linking of the process variable to the manipulated variable in accordance with the position determination.
Abstract:
Methods and devices are described for driving ferroelectric perovskite oxide crystals to achieve polarization inversion with reduced coercivity. In some embodiments, the anisotropy in the potential energy surface of a ferroelectric material is employed to drive polarization inversion and switching with a reduced coercive field relative to uniaxial excitation. In some embodiments, polarization inversion with reduced coercivity is produced via the application of an electric field that exhibits a time-dependent orientation, in contrast with conventional uniaxial electrical excitation, thereby causing the central ion (and the crystal structure as a whole) to evolve along a lower-energy path, in which the central ion is driven such that it avoids the potential energy maximum. This may be achieved, for example, by applying at least two non-parallel time-dependent voltages (e.g. bias, potential) such that orientation of the electric field changes with time during the switching cycle.
Abstract:
A method for testing the integrity of a stack during ultrasonic welding, includes the steps of: (i) ultrasonically welding two or more work pieces with a stack, the stack including a convertor and a horn; (ii) measuring a frequency profile based on a vibration of the horn during the welding step; and (iii) comparing the measured frequency profile to a standard frequency profile to obtain an error rate, the error rate being indicative of a difference between the measured frequency profile and the standard frequency profile. A system employing the aforementioned method is also provided.
Abstract:
An electrical waveform generator for driving an electromechanical load includes a digital signal processor connected to a waveform generator component in turn connected to an amplifier section with a filter network, the latter being connected to sensing and conditioning circuit componentry that is in turn connected to analog-to-digital converter circuitry. A digital memory stores digitized voltage and current waveform information. The processor determines a phase difference between voltage and current waveforms, compares the determined phase difference to a phase difference command and generates a phase error or correction signal. The processor also generates an amplitude error signal for inducing the amplifier section to change its output amplitude to result in a predetermined amplitude error level for a respective one of the voltage and current waveforms.
Abstract:
The present invention relates to an output stage for adapting an AC voltage signal of an ultrasound generator to a converter connectable to the output stage, wherein the output stage has two input terminals for receiving the AC voltage produced by the ultrasound generator and two output terminals for outputting an adapted AC voltage, as well as an output transformer with a primary coil having a number n1 turns and a secondary coil with a number n2 turns, the output transformer having a main inductance LH as well as a leakage inductance Lσ, the two input terminals being connected to one another via the primary coil and the two output terminals being connected to one another via the secondary coil. In order to disclose an output transformer, which allows an economical and uncomplicated adaptation of a generator output to the converter input, it is proposed according to the invention that a filter capacitor CP is provided, which either connects the two output terminals in parallel to the secondary coil or connects an output terminal to a tap of the secondary coil or is connected to a filter coil with n3 turns, which is inductively coupled to the primary and the secondary coil.