Abstract:
There is provided a multi-layered glass in which two glass plates are placed such that they form a space via a spacer placed in a peripheral part of glass plates, wherein at least one low-emissivity film, which includes a plastic film and a Fabry-Perot interference filter formed on one side or both sides of the plastic film, is placed in the space, whereby space is divided; each of gaps between the glass plates and the spacer, and between the low-emissivity film and the spacer is sealed with a primary sealing material; a gap between the glass plates outside of the primary sealing material and the spacer is sealed with a secondary sealing material; and a reinforcement material is placed inside of the secondary sealing material. The multi-layered glass has a good appearance and excellent heat-insulating properties.
Abstract:
A laminate structure having a first glass layer, a second glass layer, and at least one polymer interlayer intermediate the first and second glass layers. In some embodiments, the first glass layer can be comprised of a strengthened glass having first and second surfaces, the second surface being adjacent the interlayer and chemically polished and the second glass layer can be comprised of a strengthened glass having third and fourth surfaces, the fourth surface being opposite the interlayer and chemically polished and the third surface being adjacent the interlayer and having a substantially transparent coating formed thereon. In another embodiment, the first glass layer is curved and the second glass layer is substantially planar and cold formed onto the first glass layer to provide a difference in surface compressive stresses on the surfaces of the second glass layer.
Abstract:
A combination of a connector for glass elements and such glass elements to provide a loadbearing glass construction that comprises at least one glass post and at least one glass beam that are arranged adjacent to each other, wherein the connector is arranged to provide a rotationally fixed connection between the post and the beam.
Abstract:
A glass sheet laminate structure (10) produced by laminating at least three glass sheets (20) each having a thickness of less than 1 mm through an intermediate layer (30) between two adjacent glass sheets. The maximum variation ΔHmax of the interval H between two adjacent glass sheets opposed to each other through the intermediate layer in connection with the central portion and the opposite end portions satisfies a relationship of 0 μm
Abstract:
A silicone composition comprising at least one hydrogenpolysiloxane resin having an average of at least two silicon-bonded hydrogen atoms per molecule, a cross-linking agent having an average of at least two aliphatic carbon-carbon double bonds per molecule, and a hydrosilylation catalyst; a silicone adhesive comprising a cured product of at least one hydrogen-polysiloxane resin; and a coated substrate and a laminated substrate, each comprising the silicone adhesive.
Abstract:
A sheet glass laminate structure (10) is produced by laminating at least three sheet glasses (20) each having a thickness of less than 1 mm through an intermediate layer (30) between two adjacent sheet glasses. When a central portion of 20 mm in length including the middle point of a virtual line and opposite end portions respectively being 20 mm long from the opposite ends of the virtual line are set on the virtual line having a length equal to 50% of the maximum overall dimension of the translucent surface of the sheet glass (20) and extending in parallel with the direction of maximum overall dimension with the center of the translucent surface as its middle point, a maximum variation ΔHmax of the interval H between two adjacent sheet glasses opposed to each other through the intermediate layer in connection with the central portion and the opposite end portions satisfies a following relationship of 0 μm
Abstract:
This invention comprises a glazing element having a transparent laminate secured to a structural support, and a process for preparing the same. The laminate comprises at least one layer of glass having self-adhered directly to the layer of glass a layer of thermoplastic polymer having low haze, wherein the layer of thermoplastic polymer is attached to the structural support along the edges of the laminate.
Abstract:
Bonded vehicular glass assemblies utilizing two-component urethane adhesives to attach dynamic load-bearing attachment members to glass substrates to form a joint suitable for use on a vehicle, and related methods of forming are described herein. In addition, methods of attaching components to glass by use of these adhesives are disclosed. The method of forming the assemblies may include priming the glass panel prior to applying the adhesive to the primed glass panel and/or attachment member. The method may include allowing the urethane adhesive to cure to form a layer of cured urethane adhesive bonding the attachment member to the first surface of the glass panel without exposure of the bonded attachment member on the second surface of the panel. The cured adhesive layer disposed between the attachment member and the glass panel may have a thickness in the range from about 0.25 mm to about 2.0 mm.
Abstract:
An assembly and method is provided for a decorative panel which may be utilized as a screen, wall, or other structural surface comprises a wire mesh woven with flat, substantially flat, or planar surfaced wires mounted within transparent or translucent sheets of glass, polycarbonate, plastic, and/or other glass-like material. The wires comprise twisted portions within the weave thereof whereby the twisting flat, substantially flat or planar surfaces thereby produce a visual effect. During construction of the panel, one or more sheets of binding material are positioned between the transparent or translucent sheet along with the mesh. The assembly is heated and compressed to thereby form a panel with all components bound together.
Abstract:
An arrangement for closing an opening of a vehicle and a corresponding manufacturing method, in which a shattering protection element (30, 30A, 30B) is fixed to a pane or to a functional element (60) fixed at the pane. The pane and the shattering protection element are connected via a permanently elastic adhesive connection (12) to the vehicle body or to a holding element (18) connected to the vehicle body.