Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service from a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
The present invention provides a solution for optimizing the transport capacity of an elevator system. For optimizing the transport capacity the elevator system dynamically locks floors served by it on the basis of defined locking rules. When a floor is locked, that floor can not be considered a designation floor or receive elevator calls.
Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
A method of allocating calls of a lift installation with at least one lift and at least one car per lift to move passengers in a journey from at least one input floor to at least one destination floor, a system for executing the method and a computer readable memory with instructions for executing the method. The method includes receiving input calls from passengers travelling from an input floor to a destination floor, each call identifying at least one floor as an input floor or a destination floor. A start zone with identified input floors and a destination zone with identified destination floors are determined from the input calls and destination calls. Each identified floor within a corresponding zone is considered using at least one selection criterion and a stopping floor is selected which satisfies the criterion. The car is caused to stop at fewer than all the identified input floors and identified destination floors during the journey.
Abstract:
A method of allocating calls of a lift installation with at least one lift and at least one car per lift to move passengers in a journey from at least one input floor to at least one destination floor, a system for executing the method and a computer readable memory with instructions for executing the method. The method includes receiving input calls from passengers travelling from an input floor to a destination floor, each call identifying at least one floor as an input floor or a destination floor. A start zone with identified input floors and a destination zone with identified destination floors are determined from the input calls and destination calls. Each identified floor within a corresponding zone is considered using at least one selection criterion and a stopping floor is selected which satisfies the criterion. The car is caused to stop at fewer than all the identified input floors and identified destination floors during the journey.
Abstract:
An intelligent destination elevator control system streamlines the efficiency and control of destination elevators. The system monitors a building's population and predicts elevator traffic conditions. The system may monitor attributes of the destination elevators. Based on the monitored data, the system may generate a data structure that renders time-tables and target elevator service quality parameters that may control the destination elevators.
Abstract:
A set of cars in an elevator system are scheduled by assigning passengers to the cars such that a current schedule for each car does not exceed a predetermined maximum number of stops per round trip, and the car is filled as near as possible to a maximum capacity at a predetermined bottleneck.
Abstract:
An elevator system including a car call registration device by which an elevator user registers a car call before riding on a car and a group supervisory controller with a building specification data storage section in which building specification data including specially-assigned floors is stored. Further, a specially-assigned floor judgment section judges whether a departure floor is a specially-assigned floor when a car call is registered, and a traffic condition judgment section judges the traffic condition of elevators within a building. A car assignment is performed based on the traffic condition judgment section judging by the specially-assigned floor judgment section that the departure floor is a specially-assigned floor, and a car assignment is performed based on a building specification stored in the building specification data storage section when the specially-assigned floor judgment section judges the departure floor is not a specially-assigned floor.
Abstract:
In an elevator system floors each include: a hall registration device that places a plurality of car calls for moving a car to destination floors different from one another; and a display device that displays the car that has been assigned the plurality of car calls. A limit value setting mechanism sets, for each of the plurality of floors separately, a limit value for limiting a count of the plurality of car calls that can be assigned to the same car. A count-up mechanism obtains, when a new car call is made, a call count of each car by a given method, based on information about the plurality of car calls that have been assigned to the car. A candidate car selector compares the limit value set to a floor where the new car call is made and the call count of the each car, to thereby select, as a candidate car, the car to which the new car call can be assigned from among the cars.
Abstract:
In a control device for double-deck elevator systems equipped with a plurality of elevators that have an upper deck and a lower deck that are conveyed simultaneously to two adjacent floors and that assign elevator decks to respond to boarding hall calls from each floor, to select the optimal deck for responding to boarding hall calls is selected from among all of the aforementioned decks to make elevator travel and passenger transport more efficient. A response suitability index is found from various elements-predicted response time to a boarding hall call by a deck, the likelihood ratio of said predicted response time, the effect on existing boarding hall calls by responding to the boarding hall call, the car space available for the deck, and the number of elevators resulting from response to the boarding hall calls Processing to find this response suitability index is performed for all the decks of multiple elevators, the deck that has the optimal response suitability index is determined from among them and an assignment is made.