Abstract:
Microneedle devices are provided for transport of therapeutic and biological molecules across tissue barriers and for use as microflameholders. In a preferred embodiment for transport across tissue, the microneedles are formed of a biodegradable polymer. Methods of making these devices, which can include hollow and/or porous microneedles, are also provided. A preferred method for making a microneedle includes forming a micromold having sidewalls which define the outer surface of the microneedle, electroplating the sidewalls to form the hollow microneedle, and then removing the micromold from the microneedle. In a preferred method of use, the microneedle device is used to deliver fluid material into or across a biological barrier from one or more chambers in fluid connection with at least one of the microneedles. The device preferably further includes a means for controlling the flow of material through the microneedles. Representative examples of these means include the use of permeable membranes, fracturable impermeable membranes, valves, and pumps.
Abstract:
Side-ported microneedles are produced from a suitably shaped microneedle mould (40). A microneedle mould base (32) is made with a number of microneedle mould recesses (30) in it. One surface of the microneedle mould base (32) is coated with a seed layer (34). The microneedle mould base (32) contains two microneedle mould sheets (24, 26), which are separated to gain access to an internal surface of one of the microneedle mould sheets (24, 26). Side-port forming channels (38) are formed on one of the internal surfaces, intersecting with the recesses (30) within the relevant microneedle mould sheet (24). The two microneedle mould sheets (24, 26) are placed back together and joined together as a unitary microneedle mould (40). The microneedles are formed in the recesses (30) by depositing a microneedle layer (44) therein and on the surface with the seed layer (34). The microneedle layer (44) fails to deposit at side-port forming holes (42) where the side-port forming channels (38) intersect the recesses (30), which result in side-ports (46) in the moulded microneedles (52).
Abstract:
The present invention provides a method of coating microneedles by which the microneedles mounted on a microneedle device are coated accurately and easily in a mass-producible manner. In this method, a microneedle device (22) with a plurality of microneedles (21) is mounted on a table (23), while a mask plate (25) with a plurality of apertures (24) is fixed to a frame member (26), and a coating solution (27) is drawn in the direction of arrow A on the mask plate (25) using a spatula (28) to fill the apertures (24) with the coating solution. The microneedles (21) are inserted in the apertures (24) before or after the filling of the apertures (24) with the coating solution (27) to coat the microneedles (21).
Abstract:
A method for manufacturing microneedle structures is disclosed using soft lithography and photolithography, in which micromold structures made of a photoresist material or PDMS are created. The micromold manufacturing occurs quite quickly, using inexpensive materials and processes. Once the molds are available, using moldable materials such as polymers, microneedle arrays can be molded or embossed in relatively fast procedures. In some cases a sacrificial layer is provided between the forming micromold and its substrate layer, for ease of separation. The microneedles themselves can be solid projections, hollow “microtubes,” or shallow “microcups.” Electrodes can be formed on the microneedle arrays, including individual electrodes per hollow microtube.
Abstract:
In the present disclosure a device for sensing and/or actuation purposes is presented in which microstructures (20) comprising shafts (2) with different functionality and dimensions can be inserted in a modular way. That way, out-of-plane connectivity, mechanical clamping between the microstructures (20) and a substrate (1) of the device, and electrical connection between electrodes (5) on the microstructures (20) and the substrate (1) can be realized. Connections to external circuitry can be realised. Microfluidic channels (10) in the microstructures (20) can be connected to external equipment. A method to fabricate and assemble the device is provided.
Abstract:
A master mould is made by wire cutting a plate in two or more directions to provide a base with an array of master mould needles protruding therefrom. The size and shape of the master mould needles can readily be varied by varying the angles of upward and downward cuts in the two or more directions. The master mould is used to make a secondary mould by hot embossing a secondary mould plate onto the master mould. This forms through-holes in the secondary mould. The secondary mould is plated with a layer of metal, which forms a microneedle array.
Abstract:
Improved microneedle arrays are provided having a sufficiently large separation distance between each of the individual microneedles to ensure penetration of the skin while having a sufficiently small separation distance to provide high transdermal transport rates. A very useful range of separation distances between microneedles is in the range of 100-300 microns, and more preferably in the range of 100-200 microns. The outer diameter and microneedle length is also very important, and in combination with the separation distance will be crucial as to whether or not the microneedles will actually penetrate the stratum corneum of skin. For circular microneedles, a useful outer diameter range is from 20-100 microns, and more preferably in the range of 20-50 microns. For circular microneedles that do not have sharp edges, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 100-150 microns; for use with other biological fluids, a useful length is in the range of 200 microns-3 mm, and more preferably in the range of 200-400 microns. For circular microneedles having sharp side edges, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 80-150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns-3 mm, and more preferably in the range of 200-400 microns. For solid microneedles having a star-shaped profile with sharp edges for its star-shaped blades, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 80-150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns-3 mm, and more preferably in the range of 200-400 microns, while the radius of each of its blades is in the range of 10-50 microns, and more preferably in the range of 10-15 microns.
Abstract:
Methods for wafer-scale fabrication of needle arrays can include mechanically modifying a wafer to produce a plurality of vertically-extending columns. The columns are etched to round and reshape the columns into substantially uniformly shaped needles. Needle arrays having needle width non-uniformity of less than about 3% and length non-uniformity of less than about 2% can be produced.
Abstract:
A microneedle array device and its fabrication method are provided. The microneedle array device comprises a supporting pad and a plurality of microneedles. Each microneedle has a top portion with a via thereon, thereby the microfluid may flow in or out. The intersection between the top portion and the inner tube of a microneedle forms a convex needle structure, and is almost perpendicular to the upper surface. For each microneedle, a hollow closed tube is formed between the top portion and the supporting pad. The fabrication method uses substrates with high transmittance and a plurality of convex area thereon as upper and lower caps, and applies a photolithography process to fabricate a microneedle array mold. It then sputters or electroplates metal material on the mold. The microneedle array is formed after having taken off the mold.
Abstract:
An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.