Abstract:
The present application discloses biodegradable polymers, to porous and other materials comprising such polymers, and to various medical uses of such materials, including use as a scaffold for supporting cell adhesion or the in-growth for regeneration of tissue. The polymer is of the formula A-O-(CHR1CHR2O)n-B wherein A is a poly(lactide-co-glycolide) residue, the molar ratio of (i) lactide units [-CH(CH3)-COO-] and (ii) glycolide units [-CH2-COO-] in the poly(lactide-co-glycolide) residue being in the range of 80:20 to 10:90, B is either a poly(lactide-co-glycolide) residue or hydrogen, C1-6-alkyl or hydroxy protecting groups, one of R1 and R2 is hydrogen or methyl, and the other is hydrogen, n is 10-1000, the molar ratio of (iii) polyalkylene glycol units [-(CHR1CHR2O)-] to the combined amount of (i) lactide units and (ii) glycolide units in the poly(lactide-co-glycolide) residue(s) is at the most 14:86, and the molecular weight of the copolymer is at least 20,000 g/mol.
Abstract:
Aerogel compositions that include polyamic amides, methods for preparing the aerogel compositions, and articles of manufacture that include or manufactured from the aerogel compositions are described.
Abstract:
Aerogel compositions, methods for preparing the aerogel compositions, articles of manufacture that include or are made from the aerogel compositions are described and uses thereof. The aerogels include a branched polyimide matrix with little to no crosslinked polymers.
Abstract:
The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
Abstract:
The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
Abstract:
The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
Abstract:
The present application discloses biodegradable polymers, to porous and other materials comprising such polymers, and to various medical uses of such materials, including use as a scaffold for supporting cell adhesion or the in-growth for regeneration of tissue. The polymer is of the formula A—O—(CHR1CHR2O)n-B wherein A is a poly(lactide-co-glycolide) residue, the molar ratio of (i) lactide units [—CH(CH3)—COO—] and (ii) glycolide units [—CH2—COO—] in the poly(lactide-co-glycolide) residue being in the range of 80:20 to 10:90, B is either a poly(lactide-co-glycolide) residue or hydrogen, C1-6-alkyl or hydroxy protecting groups, one of R1 and R2 is hydrogen or methyl, and the other is hydrogen, n is 10-1000, the molar ratio of (iii) polyalkylene glycol units [-(CHR1CHR2O)—] to the combined amount of (i) lactide units and (ii) glycolide units in the poly(lactide-co-glycolide) residue(s) is at the most 14:86, and the molecular weight of the copolymer is at least 20,000 g/mol.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, would dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rats. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.