Abstract:
This invention provides methods of treatment for welded products by pulse impact energy, preferably ultrasonic, at original production, during the active life period for maintenance and after failure in a repair stage to improve the strength at the weld sites and to fashion stress patterns that reduce stress centers and micro-stress defects. The basic method steps are nondestructive in nature, inducing interior pulse compression waves that temporarily plasticize the metal to relax stresses and redistribute stress patterns in a gradient of metallic grain structure between a higher strength substantially grainless white layer at the weld seam to an internal base metal region in the welded body. Thus, a renewed longer life span and higher strength weld joint regions are generated in welded products.
Abstract:
열처리 경화형 강판 및 그 제조방법이 개시된다. 본 발명의 일 측면인 열처리 경화형 강판은 중량%로, C: 0.05~0.25%, Si: 0.5% 이하(0은 제외), Mn: 0.1~2.0%, P: 0.05% 이하, S: 0.03% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강판으로서, 상기 강판의 미세조직으로, 제 1 경도를 갖는 마르텐사이트 및 제 2경도를 갖는 마르텐사이트를 90부피% 이상 포함하는 것을 특징으로 한다.
Abstract:
A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece (24) is disclosed. The workpiece (24) is subjected to forces that corrugate (28, 30) and then straighten (26, 32) the workpiece (24). These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.
Abstract:
The present invention pertains to a method for modifying the structure of near-surface thin material layers in solids, to be applied inter alia for crystallizing amorphous materials and modifying the crystal structure of semiconductors, high temperature supraconductors and non conductors. The inventive method consists in exposing the solid material to short and powerful steep-sloped laser impulses, thereby generating on the exposed surface a plasma which triggers a pressure wave or a chock wave penetrating the material to be modified. The energy density of the laser impulses must be high enough to generate the plasma, but not so high as to cause an ablation of the exposed material layer. The effect obtained using said method is particularly useful when the generated plasma is to be inertially confined by covering the surface to be exposed with a material which lets the laser rays through.
Abstract:
An Al—Si coated press hardening component, wherein the Al—Si coating comprises a low-Al content ferrite layer with an Al content of less than 5 wt % and a thickness of greater than 5 μm, and having a maximum bending angle of the Al—Si coated press hardening component is greater than 65°. The thickness of the tough low-Al content ferrite layer in the Al—Si coating after hot stamping, reaching 5-100 μm, by improving the hot stamping process, so that the formation or propagation of cracks on the surface or the coating is effectively prevented, and the bendability of the pre-coated steel after hot stamping is improved. At the same time, the hot stamping process of the present invention can take into account or optimize the microstructure of the steel substrate to further improve the bendability and tensile property of the whole material.
Abstract:
A bearing assembly, particularly refrigerant lubricated bearing assembly, having at least an inner ring and an outer ring, which are rotatable to each other. At least one bearing ring is made from a nitrogen-alloyed stainless steel having a nitrogen (N) content of more than 0.6 wt.-%. A method for manufacturing such a bearing ring is also provided.
Abstract:
A method of generating twin lamellas in a metal body includes the steps of introducing the metal body into a chamber, filling the chamber with a cooling medium having a temperature that will enable generation of twin lamellas in the metal body upon deformation thereof, and deforming the metal body while the latter is surrounded by the cooling medium. The cooling medium surrounds the metal body upon deformation of the latter is in a gaseous state. The present disclosure also relates to a device for generating twin lamellas in the metal body, the device including a chamber, a chamber inlet connected to a cooling medium source, and a deformation device arranged to deform the metal body. The deformation device is positioned inside the chamber so that the metal body will be surrounded by the cooling medium in a gaseous state while being deformed by the deformation device.
Abstract:
In various embodiments, electronic devices such as thin-film transistors incorporate electrodes featuring a conductor layer and, disposed below the conductor layer, a barrier layer comprising an alloy of Cu and one or more refractory metal elements selected from the group consisting of Ta, Nb, Mo, W, Zr, Hf, Re, Os, Ru, Rh, Ti, V, Cr, and Ni.
Abstract:
A method for manufacturing a sintered magnet includes molding a green compact formed by compacting a magnet powder by press-molding the magnet powder, the green compact forming an R—Fe—B based sintered magnet having Nd as the principal component and containing a rare earth element R, sintering the green compact by heating to a sintering temperature, so as to mold a sintered magnet, pressure molding the sintered magnet by heating to a temperature not exceeding the sintering temperature, so as to correct dimensions of the sintered magnet, and adjusting the texture of the sintered magnet by aging heat treatment using heated atmosphere produced when correcting the dimensions of the sintered magnet at a temperature not exceeding the temperature during the pressure molding.