Abstract:
An elevator includes a car, a counterweight, a suspension working together with the car and the counterweight, and a wheel at least partially wound around by the suspension. The suspension includes a tie beam arrangement with two tie beams and an encasing shell wherein a ratio of the width of the suspension to the height thereof is in a range between one and three. The wheel includes a flute having a flat base for guiding the suspension. When the suspension is unloaded, there is an air gap between the suspension and a guide region of the flute. The suspension is ovalized under loading to close the air gap. The shell is coated, at least in areas, on the outer surface thereof, wherein the coating optionally has a friction-reducing, friction-increasing, and/or wear-detecting effect.
Abstract:
A load bearing member (22) useful in an elevator system (10) includes at least one elongated tension member (36), a conversion coating (46) on the elongated tension member (36), and a polymer jacket (34) at least partially surrounding the coated elongated tension member (36). In one example, the conversion coating (46) includes at least one of an oxide, a phosphate, or a chromate.
Abstract:
A rope includes elongate bodies having a length axis parallel to a length of the rope or showing helix angles smaller than 2°. The elongate bodies include tapes of ultra-high molecular weight polyethylene. The tapes have a width to thickness ratio of at least 10 and a polymer solvent content below 0.05 wt. %.
Abstract:
An exemplary method of making a load bearing elevator traction belt includes applying individual coatings of a jacket material to each of a plurality of tension members such that each tension member is individually coated separately from the other tension members. A portion of the individual coatings are joined together to secure the tension members into a desired alignment and to form a single jacket that establishes a geometry of the belt.
Abstract:
A method of making a load bearing member (30) for an elevator system (20) includes placing at least one tension member (32) adjacent one side (60) of a first layer (36) of a polymer material. A second layer (38), comprising a urethane in a disclosed example, is added adjacent to at least the one side (60) of the first layer (36) such that the tension member (32) is between the first layer (36) and the second layer (38). Such a technique allows for eliminating the bridges typically used to support the tension members in molding devices. Eliminating such bridges eliminates the resulting grooves associated with previous arrangements. Providing a grooveless exterior on the jacket (34) of the load bearing member (30) eliminates a significant source of potential vibration and noise in an elevator system.
Abstract:
An elevator system with a car or platform to transport passengers and/or goods as well as with a counterweight, which are arranged as traversable or movable along a travel path, and which are coupled and/or with a drive by a suspension element interrelating their motion. The suspension element is guided and/or driven by a traction sheave and/or a drive shaft and/or a deflecting pulley. The suspension element is sheathed and/or belt-type, with a first layer made of a first plasticizable and/or elastomeric material, containing a first exterior surface, and with at least one tension member—rope-type, tissue-type, or comprising a multitude of partial elements—that is embedded in the first layer of the suspension element. A manufacturing procedure for one of the suspension elements is provided.
Abstract:
An elevator load bearing assembly (30) includes a jacket (34) having different portions comprising different polymer compositions. In a disclosed example, a plurality of tension members (32) are at least partially surrounded by a first portion (36) comprising a first polymer composition. A second portion (38) establishes at least one exterior surface (40) of the jacket (34) and comprises a second polymer composition. In one example, a surface-modifying agent is added to alter the composition of at least a portion of the jacket (34). In another example, co-extrusion techniques using different polymer compositions establish different portions of the jacket (34).
Abstract:
A support for an elevator installation includes at least two cables of several strands each, which cables are designed for acceptance of force in a longitudinal direction, and wherein the cables are arranged along the longitudinal direction of the support at a spacing from one another and are connected by a cable casing. The cable casing has a transition region which lies between the cables and is provided with openings and webs. The webs are formed to enable a relative displacement of the cables relative to one another in the longitudinal direction.
Abstract:
An elevator support, such as a cable or a belt connected with an elevator car or counterweight, has load-bearing synthetic material strands, which are reinforced by the introduction of a second phase and have a higher modulus of elasticity than that of the unreinforced strands.
Abstract:
Tensioning bundle includes tensioning members running parallel to one another such as stranded wires or single wires. According to the invention the tensioning bundle as a whole is covered with at least one synthetic resin in an extruder. For tensioning such bundles the tensioning members may be tensioned individually or jointly.