Abstract:
The method allows the manufacture of at least first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements, at least one of the first and second assemblies (26, 28) comprising several filamentary elements (14) wound together in a helix.The method comprises a step of assembling M filamentary elements (14) together into a layer of the M filamentary elements (14) around a temporary core (16) to form a temporary assembly (22), and a step of splitting the temporary assembly (22) into at least the first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements.
Abstract:
An operating wire has a multi-twisted structure constituted by twisting side strands, each formed by twisting element wires together around a core strand. A side element wire of the side strand faces the outside of the operating wire in the radial direction at a site located on the outer circumference of the operating wire and has a flattened surface where a flat portion provided in a portion of the side element wire in the circumferential direction extends in the X axis direction, the length in the X axis direction of the flattened surface being 4.8-11.0 times the diameter of the side element wire, and the pitch magnification of the side strand being 7.0-12.0 times the diameter.
Abstract:
The present invention aims to provide a polypropylene fiber (PP fiber) excellent in strength, heat resistance, and water-absorption properties, a method of producing the same, and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber. The present invention provides: a PP fiber having a fiber having a fiber strength of 7 cN/dtex or more and having either or both of (i) DSC properties such that the endothermic peak shape by DSC is a single shape having a half width of 10° C. or lower and the melt enthalpy change (AH) is 125 J/ g and (ii) irregular properties such that the single fiber fineness is 0.i to 3 dtex and irregularities are formed on the surface.
Abstract:
The invention pertains to the production of cables and can be used for reinforcing single-block constructions and other articles made of concrete. The purpose of the invention is to create a self-rectifying reinforcing member. The reinforcement cable comprises a central wire and layer-forming wires spirally wound around the same and having a periodical profile. A periodical profile is applied on the outer section of the surface of the layer-forming wires and is made in the form of inclined protrusions above the generatrix of the crimped surface of the cable. The sections of the surface of the layer-forming wires in contact with other wires are made in the form of spirally-arranged planar flats. The cable is secured at the base of the structure and is attached upon each casting cycle between the previously-formed portion of the structure and a distribution matrix. The cable is supplied via bypass rollers and a guiding trough from reels arranged at the base. Before each casting cycle, the matrix is moved by a distance corresponding to a section to be formed. Each reinforcing member is integral along the entire length of the structure. The connection of perpendicular members is made using inserts or a tie wire.
Abstract:
A helical cord having an elliptical shape and the like is manufactured so that a length-to-width ratio or a dimension of a shaped form of the cord to be shaped in a longitudinal direction can be changed. A cord (C) is sequentially passed through through holes (21H, 22H) of stationary and movable shaping bodies (21, 22) opposing each other of a shaping device (20). At that time, the movable shaping body (22) is moved along the stationary shaping body (21) by a moving device so that the through holes (21H, 22H) become eccentric with respect to each other, and the cord (C) passing between the eccentric through holes (21H, 22H) is bent and deformed so as to be shaped. Also, a first and a second displacement mechanism that displace the movable shaping body (22) in X- and Y-directions are provided in the moving device, the movable shaping body (22) is thereby reciprocatingly displaced in the both directions in synchronization by displacement amounts which were set, respectively, the movable shaping body (22) is continuously moved in response to the displacements in the both directions, and thus the passing cord (C) is shaped.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
The present invention aims to provide a polypropylene fiber (PP fiber) excellent in strength, heat resistance, and water-absorption properties, a method of producing the same, and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber. The present invention provides: a PP fiber having a fiber strength of 7 cN/dtex or more and having either or both of (i) DSC properties such that the endothermic peak shape by DSC is a single shape having a half width of 10° C. or lower and the melt enthalpy change (AH) is 125 J/g and (ii) irregular properties such that the single fiber fineness is 0.1 to 3 dtex and irregularities are formed on the surface, the irregularities having an average interval of 6.5 to 20 μm and an average height of 0.35 to 1 μm as a result of alternate presence of a protruded portion having a large diameter and a non-protruded portion having a small diameter along its fiber axis; a method of producing the PP fiber by pre-drawing an undrawn PP fiber having an IPF of 94% or more at 120 to 150° C. at a drawing magnification of 3 to 10 times, and then post-drawing the resultant at 170 to 190° C. and a drawing magnification of 1.2 to 3.0 times under the conditions of a deformation rate of 1.5 to 15 times/min and a draw tension of 1.0 to 2.5 cN/dtex; and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber.
Abstract:
A metal cord includes at least one preformed elementary metal wire. The metal cord has an elongation at break, measured on the bare cord, higher than or equal to 3%, preferably 4% to 6%; an elongation at break, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 2% to 10% with respect to the elongation at break measured on the bare cord; a part load elongation, measured on the bare cord, higher than or equal to 0.4%, preferably 0.5% to 1.5%; a part load elongation, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 0.5% to 10%, with respect to the part load elongation measured on the bare cord.
Abstract:
A reinforcing steel cord for rubber products, such as steel belted radial tires or conveyor belts, is disclosed. This steel cord is improved in rubber penetration and ageing adhesive force relative to the rubber material. The steel cord is formed by twisting a plurality of brass coated external element wires around a flat and spirally twisted core, with the twisted direction of the core being the same as or opposite to that of the resulting steel cord. In the steel cord, the pitch of the twisted core is set to allow the core to be twisted 0.2 to 2 times within the pitch of the cord, thus preferably forming sufficient interspaces between the core and the external wires in addition to the interspaces between the external wires. Since the rubber material is completely filled in the steel cord due to such interspaces, the steel cord is remarkably improved in buckling fatigue resistance, rubber penetration, air permeability, rubber adhesive force, ageing adhesive force relative to rubber, protection of brass coated surfaces of wires, and workability during a process of producing rubber products. The steel cords of this invention are most preferably used as a reinforcing material for steel belted radial tires.