Abstract:
The invention relates to a method for producing a rope (1), wherein fibre bundles (2) are applied with a liquefied matrix material (5) upstream of and/or at a twisting point to form fibre strands (3), and are embedded into the liquefied matrix material (5) during stranding, by means of which fibre strands (3) a fibre core (6) of the rope (1) is formed and wires or wire strands (7) are wound about the fibre core (6). According to the invention, the matrix material of the fibre strands is hardened after the stranding, and the fibre strands (3) are subsequently stranded directly with one another without further application to form the fibre core (6). Preferably the fibre strands (3) are heated, during or after the stranding thereof to form the fibre core (6), in such a way that the matrix material (5) softens at least individual fibre strands (3), preferably all the fibre strands (3), another of the fibre strands (3) is connected with the matrix material (5), and is subsequently hardened, forming an integral bond with one another. The invention also relates to a rope produced according to the method.
Abstract:
Provided by the present invention is a technique which can, in a pneumatic radial tire using corrugated steel cords in the circumferential bent, improve the durability of the corrugated steel cords in order to prevent fatigue rupture thereof caused by an increase in energy input. The present invention is a pneumatic radial tire which has a carcass 1 as the skeleton extending in a toroidal shape between a pair of bead portions on either side of the tire, as well as a belt layer 2 and a tread layer 5 successively arranged thereonto at the outer part in the tire radial direction. The belt layer 2 comprises at least one layer of circumferential belt 3 which comprises a plurality of corrugated or zigzag-shaped steel cords extending along the tire circumferential direction, and when the steel cords are removed from the circumferential belt 3, the bending radius of curvature (R) of the steel cords is within the range from not less than 18 mm to not more than 125 mm.
Abstract:
A compressible rope is disclosed comprising a plurality of strands. Interconnected outer strands form a sheath, and one or more inner strands form an inner core encased by the sheath. The inner core comprises a non-planar outer surface in contact with the sheath. The strands may be a monofilament or polyfilament material. The interaction between the non-planer outer surface of the core with the interior surface of the sheath can reduce bunching as well as the separation of the strands due to compressional forces.
Abstract:
The invention pertains to the production of cables and can be used for reinforcing single-block constructions and other articles made of concrete. The purpose of the invention is to create a self-rectifying reinforcing member. The reinforcement cable comprises a central wire and layer-forming wires spirally wound around the same and having a periodical profile. A periodical profile is applied on the outer section of the surface of the layer-forming wires and is made in the form of inclined protrusions above the generatrix of the crimped surface of the cable. The sections of the surface of the layer-forming wires in contact with other wires are made in the form of spirally-arranged planar flats.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.