Abstract:
The present invention provides a light source comprising one or more light-emitting elements, one or more photosensors and, a photosensor light guide, such as, for example, a substantially planar light guide. The photosensor light guide is generally configured to capture and guide some of the light emitted from the one or more light-emitting elements to one or more photosensors optically coupled thereto, the light sensed thereby being useable as a basis for controlling the respective outputs of the one or more light-emitting elements.
Abstract:
First and second filter magazines (71, 72) in each of which plural filters having different transmission wavelengths from each other are arranged in a row are provided, and the first and second filter magazines (71, 72) are arranged next to each other in one direction. A light detection unit (73) in which plural photomultipliers of first and second photomultipliers (73a, 73b), each of which detects light that has passed through at least one of the filters included in the first and second filter magazines (71, 72), are arranged in the arrangement direction of the filters is provided, and the light detection unit (73) is placed in the one direction in such a manner to be parallel to the first and second filter magazines (71, 72). The apparatus is configured in such a manner that the first and second filter magazines (71, 72) and the light detection unit (73) are independently movable in the arrangement direction of the filters. The technical effect is to provide a light detection apparatus in which light having different wavelengths from each other is detectable by detectors corresponding to the wavelengths of the light respectively and also the size of the whole apparatus is reducible.
Abstract:
A proximity sensor for use in a portable computing device is described. In particular various embodiments of a proximity sensor which fit in an extremely small portion of a cellular phone, and accurately determine the presence of a user's head in close proximity to a surface of the cellular phone.
Abstract:
First and second filter magazines (71, 72) in each of which plural filters having different transmission wavelengths from each other are arranged in a row are provided, and the first and second filter magazines (71, 72) are arranged next to each other in one direction. A light detection unit (73) in which plural photomultipliers of first and second photomultipliers (73a, 73b), each of which detects light that has passed through at least one of the filters included in the first and second filter magazines (71, 72), are arranged in the arrangement direction of the filters is provided, and the light detection unit (73) is placed in the one direction in such a manner to be parallel to the first and second filter magazines (71, 72). The apparatus is configured in such a manner that the first and second filter magazines (71, 72) and the light detection unit (73) are independently movable in the arrangement direction of the filters. The technical effect is to provide a light detection apparatus in which light having different wavelengths from each other is detectable by detectors corresponding to the wavelengths of the light respectively and also the size of the whole apparatus is reducible.
Abstract:
Apparatuses and methods for limiting the angle of incidence (AOI) of light reaching a dichroic filter. The apparatus may include an AOI filter element and the dichroic filter. The apparatus may be a sensor and may include a photodetector. The dichroic filter may be configured to prevent light having a wavelength outside a band pass region from reaching the photodetector and to pass light having a wavelength within the band pass. Physical limitations of the dichroic filter may preclude the dichroic filter from preventing high AOI light having a wavelength outside a band pass region from reaching the photodetector. The AOI filter element may be configured to prevent light having a high AOI from reaching the dichroic band pass filter and to propagate light having a low AOI to the dichroic band pass filter. The AOI filter element may be a fiber optic bundle comprising a plurality of optical fibers.
Abstract:
L'invention concerne une cellule de mesure (1) d'intensité lumineuse, comportant un socle (10) qui présente une fenêtre (31) d'entrée de lumière, et un capteur de lumière (51) qui est logé à l'intérieur du socle et qui est tourné vers ladite fenêtre. Selon l'invention, il est prévu à l'intérieur du socle un élément de délimitation (40) qui délimite un espace de passage (41A) du flux de lumière reçu par le capteur de lumière (51).