Abstract:
A method for simultaneous time delay integration (TDI) imaging using multiple channels of a multi-tap device, including: translating a field of view (FOV) over a sample to be imaged; optically aligning a direction of travel of the FOV to a direction of charge transfer for each tap of the multi-tap device; and reading out the image data from each channel using settings that are appropriate to a particular application.
Abstract:
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a moveable sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
Abstract:
A spectral colorimetric apparatus includes a concave surface reflection type diffraction element configured to disperse an incident light beam; a sensor including a plurality of photoelectric conversion elements, wherein the plurality of photoelectric conversion elements is arranged in a direction parallel to a tangential line of a Rowland circle of the concave surface reflection type diffraction element, each photoelectric conversion elements being configured to receive the light beam dispersed by the concave surface reflection type diffraction element; a housing configured to support the concave surface reflection type diffraction element and the sensor; and a bonding portion provided on the housing, wherein the sensor is fixed to the housing with an adhesive provided between the bonding portion and the sensor. The bonding portion is provided only at a position corresponding to a center of the plurality of photoelectric conversion elements of the sensor in the direction in which the plurality of photoelectric conversion elements is arranged.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a light receiving member by moving in a state in which the light receiving member abuts on the adjustment surface. The light receiving member is supported by the side wall of the housing in a state in which the light receiving member abuts on the adjustment surface and receives a light beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the light receiving member passes.
Abstract:
A microscopic spectrometer is described in which the light from a light source (1) (3) is incident upon a sample (2) and the light, which has been reflected by or transmitted through said sample (2) is subjected to a spectrometric measurement after having passed an object lens. A beam splitter (12) is disposed behind said object lens (3) to form two branched optical paths (a, b), whereas a diaphragm (10, 11) in only one (a) of said optical paths (a, b) at an image plane (4a) thereof is provided. Rejoining means (16-19) for rejoining the light passing along said two branched optical paths (a, b) and positioned behind the respective image planes (4a, 4b) of said paths (a, b) are used in order to observe an image obtained by synthesizing images at their respective image planes (4a, 4b).