Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
Abstract:
L'invention est un procédé pour l'estimation d'une fréquence cardiaque par la détection d'un rayonnement rétrodiffusé ou transmis par une zone corporelle. Ladite partie est illuminée, simultanément ou successivement, par un rayonnement lumineux s'étendant sur première bande spectrale et une deuxième bande spectrale. Un photodétecteur détecte un rayonnement émis par ladite zone corporelle sous l'effet de son illumination, dans chacune des bandes spectrales. Une première fonction de détection et une deuxième fonction de détection sont formées respectivement à partir du rayonnement détecté dans chaque bande spectrale. Le procédé permet une détermination de la fréquence cardiaque par la détermination d'instants caractéristiques identifiés simultanément à partir de la première fonction de détection et de la deuxième fonction de détection.
Abstract:
Methods and apparatus for article authentication include an exciting radiation generator that exposes an area of the article to exciting radiation, and at least two radiation detectors that detect emitted radiation from the area in a first band and in a second band that does not overlap the first band. The first band corresponds with a first emission sub-band of an emitting ion, and the second band corresponds with a second emission sub-band of the same emitting ion. A processing system calculates a comparison value that represents a mathematical relationship (e.g., a ratio) between a first intensity of the emitted radiation in the first band with a second intensity of the emitted radiation in the second band, and determines whether the comparison value compares favorably with an authentication parameter. When the comparison value compares favorably with the authentication parameter, the article is identified as being authentic.
Abstract:
A photometric device (18) for quantifying a nucleic acid in a sample (518) in a tube (58), comprises a light emission unit (28), a sample obtaining unit (38) for holding the tube (58) with the nucleic acid sample (518) and a detection unit (48) wherein the sample obtaining unit (38) is arranged in between the light emission unit (28) and the detection unit (48) In particular, the light emission unit (28) and the detection unit (48) are arranged to provide light through the sample obtaining unit (38) such that light of a first wavelength of about 230 nanometers and light of a second wavelength of about 260 nanomaters are simultaneously detectable within the detection unit (48). The photometric device (18) allows for efficiently analysing the nucleic acid sample by only considering invisible light. In particular, content of nucleic acid such as particularly a RNA or a DNA and a nucleic acid/salt ratio can simultaneously be determined such that efficiency of quantification of the nucleic acid sample (518) can be increased. Furthermore, since in addition thereto the sample obtaining unit (38) is arranged to hold the tube (58) or cuvette and the light directly passes the sample (518) being arranged in the tube (58) or cuvette, loss of sample, contamination of sample, need of additional sample treatment equipment such as pipettes or additional tubes as well as frequent cleaning of optics of the photometric device can be prevented or reduced.
Abstract:
An arrangement ("Al') adapted for a spectral analysis, having a light transmitting means (10, 2a), a delimited space (11) in the form of a cavity serving as a measuring cell and defining an optical measuring distance ("L"), a light sensing means (12) for detecting radiation (4) passing said optical measuring distance ("L") from said light transmitting means (10), and a unit (13), connected at least to said light sensing means (12) and performing the spectral analysis. Beams of radiation from the light transmitting means are made to pass through an optical band-pass filter (3f) at different angles of incidence. The filter is structured so as to pass a wavelength in dependence of the angle of incidence. A first chosen wavelength component is separated from a second wavelength component, each being received in its opto-electric means (3b, 3b') - Said unit is adapted for detecting and calculating an occurring radiation intensity for each such wavelength component.
Abstract:
Method and apparatus for detecting, by absorption spectroscopy, an isotopic ratio of a sample, by passing first and second laser beams of different frequencies through the sample. Two IR absorption cells are used, a first containing a reference gas of known isotopic ratio and the second containing a sample of unknown isotopic ratio. An interlacer or reflective chopper may be used so that as the laser frequencies are scanned the absorption of the sample cell and the reference cell are detected alternately. This ensures that the apparatus is continuously calibrated and rejects the baseline noise when phase sensitive detection is used.
Abstract:
A spectral reflectance sensor including: a light source for emitting a modulated beam of red light; a light source for emitting a modulated beam of near infrared light; a receiver for receiving reflected light produced by either the red source or the near infrared source; a receiver for receiving incident light from either the red source or the infrared source; a signal conditioner responsive to the modulation such that the signals produced by the receivers in response to reflected and incident light from the source can be discriminated from signals produced by ambient light; and a microprocessor having an input such that the microprocessor can determine the intensities of incident red light, reflected red light; incident near infrared light; and reflected near infrared light. From these intensities, and by knowing the growing days since emergence or planting, the sensor can calculate the mid-growing season nitrogen fertilizer requirements of a plant.
Abstract:
The present invention relates to a method for monitoring and control of smeltmetallurgical processes, endothermic as well as exothermic ones, preferably pyrometallurgical processes, by means of optical spectrometry, whereby one first determines for each endothermic and exothermic smeltmetallurgical process and/or process step characteristic emissions or absorptions and identifies the atomic or molecular origin of the emissions/absorptions, that one during a running pro cess records changes in the characteristic emissions/absorptions and relates these changes to the condition of the process and with reference hereto controls the process.