Abstract:
A resonant beam sensor (1, 10, 34) is excited into resonance by directing onto it a drive signal comprising light which has been amplitude modulated at the resonant frequency. A portion of the drive signal reflected by the sensor (1, 10, 34) is demodulated by a photodetector (15, 32) to provide a measurement signal.
Abstract:
An instrumentation system for use in measuring and processing industrial process variables, such as flow, pressure, or temperature, includes a resonant element sensor whose resonant frequency varies in accordance with changes in the desired process variable communicating through an optical fiber link to a distant control room. The sensor is activated into resonant physical motion by light energy from a source in the control room, while the motion of the wire is sensed optically and retransmitted to the control room to produce an output signal whose frequency is equal to that of the resonating element. A feedback network maintains the sensor in resonance by synchronizing the delivery of light energy to the motion of the resonant element. The powering and sensing aspect may be performed by individual fiber optic cables or alternatively this function may be combined by utilizing a single fiber optic strand.
Abstract:
Système de mesure résonant de type MEMS et/ou NEMS, comportant : Un dispositif optomécanique (4) comprenant au moins un élément résonant (14) à au moins une fréquence de résonance fr, un guide d'onde (10) couplé à un anneau optique (12) dont l'indice optique est sensible au déplacement de l'élément résonant (14), Des moyens d'excitation (6) de l'élément résonant (14) à au moins sa fréquence de résonance fr, Des moyens (2) aptes à injecter un faisceau lumineux à une fréquence f1 = fr + Δf dans le dispositif optomécanique, comportant une diode laser et des moyens de modulation disposés entre la diode laser (18) et le guide d'onde (10) à la fréquence f1. Un dispositif de photodétection (8) apte à mesurer l'intensité d'un faisceau lumineux de mesure sortant du guide d'onde (10), l'intensité du faisceau de mesure ayant au moins une composante à une fréquence 2Δf.
Abstract:
A resonator device 10 is disclosed. The resonator device may be used in a transducer or a sensor such as a pressure, force or acceleration sensor. The resonator device comprises a resonator 20 provided on a diaphragm 30. A cap 40 is provided which may be fusion bonded to the diaphragm 30 to enclose the resonator 20 and form a hermetically sealed package 10. The resonator device is excited by applying electromagnetic stimulation, such as infra-red or optical stimulation, which may be from a laser via a fibre 50. The resonator device may be interrogated by applying an electromagnetic signal into the optical cavity formed between the resonator 20 and the inside surface of the cap 40 to derive a frequency change of the resonator. As the resonator device incorporates a hermetically sealed package and is stimulated by electromagnetic radiation, it is robust and able to operate in harsh environments.
Abstract:
In a method for monitoring strain variations of a strain responsive element of a micromachined sensor device while subjected to outside parameter conditions, at least two oscillation resonance modes of said element are activated and interrogated optically. Thereby correspondingly at least two resonance frequencies are obtained. From parameter/frequency characteristics of said device correspondingly at least two parameter values are derived.
Abstract:
A resonant beam sensor (1, 10, 34) is excited into resonance by directing onto it a drive signal comprising light which has been amplitude modulated at the resonant frequency. A portion of the drive signal reflected by the sensor (1, 10, 34) is demodulated by a photodetector (15, 32) to provide a measurement signal.
Abstract:
A pressure sensor includes a resonator element (14) mounted on an optical fibre ferrule (11) whereby light signals for maintaining the resonator in a state of oscillation and for returning a modulated signal to a remite station are coupled to the resonator. The resonator is located in an evacuated cavity (16) and is mounted on a flexible diaphragm (13) whereby pressure changes may be detected as changes in the resonant frequency.
Abstract:
A strain or pressure responsive transducer comprises a pair of elongate beam resonators arranged end to end and provided with a flexible coupling therebetween. The arrangement oscillates e.g. in a double see-saw or butterfly mode. The transducer is disposed on a diaphragm whereby strain may be transmitted to the oscillatory system. The frequency of oscillation is a function of this strain.
Abstract:
A measuring system including a sensor positioned to a belt to measure an oscillation or vibration of the belt based at least in part on a trigger threshold. Also, the measuring system may include a diagnostic tool coupled the sensor to receive a plurality of measurements of the oscillation or vibration of the belt, wherein the diagnostic tool may determine a tension of the belt based at least in part on an average of the plurality of measurements of the oscillation or vibration of the belt.