Abstract:
A sensor (1) has a light conductor (2) having a grating (FBG), a cavity (5), and a transparent cavity end wall (4), a light emitter for directing light through the conductor, and a light detector for detecting reflected light, and a processor. The processor is adapted to analyse light reflected due to the grating (FBG, 6) to determine an indication of temperature, light reflected from the end (7) of the cavity (5) to determine an indication of pressure, and also light reflected from the outer surface (8) of the cavity wall (4) to determine an indication of refractive index of a medium outside said cavity wall. The processor may use one output to compensate another, for example pressure and temperature may be used to compensate for variation in refractive index.
Abstract:
A fiber-optic sensor can have a Michelson sensor portion and a Mach-Zehnder sensor portion. A first splitter-coupler can be configured to split incoming light between a first fiber portion and a second fiber portion. A first polarization-phase conjugation device can be configured to conjugate a polarization phase of incident light corresponding to the first fiber portion, and a second polarization-phase conjugation device can be configured to conjugate a polarization phase of incident light corresponding to the second fiber portion. Each of the first and second polarization-phase conjugation devices can be configured to reflect light toward a detector and through the respective first and second fiber portions. A coupler can be configured to join light in the first fiber portion with light in the second fiber portion, and a third fiber portion can be configured to receive light from the coupler and to illuminate a second detector.
Abstract:
Apparatus, systems, and methods may operate to transmit energy to a nanofiber sampling coil and/or a nanofiber reference coil. Further activity may include receiving the energy as modified by evanescent interaction with a sampled material located proximate to the sampling coil and/or as modified by propagation through the reference coil, and comparing the energy modified by evanescent interaction with the energy modified by propagation through the reference coil to determine a spectroscopic property of the sampled material. Additional apparatus, systems, and methods, including the use of nanofibers and fluorescence induced by evanescent radiation to conduct spectroscopic analysis, are disclosed.
Abstract:
An optical waveguide (1) has a grating structure (2) in which gratings of different orders are superimposed. When first and second order gratings are superimposed, input light is partially reflected by the first order component and partially coupled out of the waveguide by the second order component. The second order component can also be used to couple external light into the waveguide (1). The grating structure (2) has applications to free space couplers, optical sensors, and suppression of ripples in dispersion compensators.
Abstract:
A utility pole deterioration detection system includes a cable (20) disposed in a utility pole (10), the cable (20) containing a communication optical fiber, a receiving unit (331) configured to receive an optical signal containing a pattern that changes according to a deterioration state of the utility pole (10) from at least one optical fiber contained in the cable (20), and a detection unit (332) configured to detect a deterioration state of the utility pole (10) based on the pattern.
Abstract:
A utility pole deterioration detection system includes a cable (20) disposed in a utility pole (10), the cable (20) containing a communication optical fiber, a receiving unit (331) configured to receive an optical signal containing a pattern that changes according to a deterioration state of the utility pole (10) from at least one optical fiber contained in the cable (20), and a detection unit (332) configured to detect a deterioration state of the utility pole (10) based on the pattern.
Abstract:
A solution is provided comprising boron nitride nanotubes (BNNTs) in a liquid solvent. An optical waveguide, such as an optical fiber, is contacted with the solution so as to form a layer of the solution supported on at least a portion of the optical waveguide. The liquid solvent is then removed from the layer of the solution supported on the optical waveguide in order to form a coating of the BNNTs on the optical waveguide. Further provided is a BNNT coated optical waveguide for use as a sensor.
Abstract:
A system for determining a process variable of a medium arranged in a container is disclosed, including an optical fiber Bragg sensor with an optical waveguide with a fiber Bragg grating, a signal generating unit designed to generate an optical input signal and couple it into the waveguide, a receiving unit designed to receive an optical output signal from the waveguide and converts it into an electrical output signal, and an evaluating unit which determines the process variable using the electrical output signal, wherein a subsection of the optical waveguide is arranged inside or in a wall of the container, the subsection designed such that the fiber Bragg grating is affected by the process variable to be determined of the medium.
Abstract:
Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.
Abstract:
There are provided an SPR sensor cell and sensor, both having very excellent detection sensitivity. The SPR sensor cell includes: an under-cladding layer; a core layer, at least a part of the core layer being adjacent to the under-cladding layer; and a metal layer covering the core layer. The core layer includes a uniform layer and a gradient layer arranged between the uniform layer and the under-cladding layer; a refractive index NCO of the uniform layer satisfies a relationship of 1.34≦NCO