SPECTROSCOPIC MEANS AND METHODS FOR IDENTIFYING MICROORGANISMS IN CULTURE
    82.
    发明申请
    SPECTROSCOPIC MEANS AND METHODS FOR IDENTIFYING MICROORGANISMS IN CULTURE 审中-公开
    用于鉴定文化中微生物的光谱手段和方法

    公开(公告)号:WO2013093913A1

    公开(公告)日:2013-06-27

    申请号:PCT/IL2012/050534

    申请日:2012-12-19

    Abstract: A spectroscopic method for spectroscopic detection and identification of bacteria in culture is disclosed. The method incorporates construction of at least one data set, which may be a spectrum, interference pattern, or scattering pattern, from a cultured sample suspected of containing said bacteria. The data set is corrected for the presence of water in the sample, spectral features are extracted using a principal components analysis, and the features are classified using a learning algorithm. In some embodiments of the invention, for example, to differentiate MRS A from MSSA, a multimodal analysis is performed in which identification of the bacteria is made based on a spectrum of the sample, an interference pattern used to determine cell wall thickness, and a scattering pattern used to determine cell wall roughness. An apparatus for performing the method is also disclosed, one embodiment of which incorporates a multiple sample analyzer.

    Abstract translation: 公开了用于光谱检测和鉴定培养细菌的光谱方法。 该方法包括来自怀疑含有所述细菌的培养样品的至少一个数据集的构建,其可以是光谱,干涉图案或散射图案。 对样品中水的存在进行数据集的校正,使用主成分分析提取光谱特征,并使用学习算法对特征进行分类。 在本发明的一些实施方案中,例如为了区分MRS A和MSSA,进行多模式分析,其中基于样品的光谱,用于确定细胞壁厚度的干涉图案和 用于确定细胞壁粗糙度的散射图。 还公开了一种用于执行该方法的装置,其一个实施例包括多个样本分析器。

    METHODS AND SYSTEM FOR RECOGNIZING WOOD SPECIES
    83.
    发明申请
    METHODS AND SYSTEM FOR RECOGNIZING WOOD SPECIES 审中-公开
    用于识别木材物种的方法和系统

    公开(公告)号:WO2011065814A1

    公开(公告)日:2011-06-03

    申请号:PCT/MY2010/000302

    申请日:2010-11-25

    Abstract: A method, a system and a computer program are disclosed for recognizing of at least one wood species. In particularity, the method acquires an image of the at least one wood species for analyzing the image using an image acquisition module (IAM) (220). In addition, the method processes the image for enhancing quality of the acquired image using a pre processing module (PPM) (230). Additionally, the method extracts a plurality of features of the processed image for classifying at least one pattern using a feature extraction module (FEM) (240). Further, the method classifies the at least one pattern for the recognizing the at least one wood species using a pattern classification module (PCM) (250).

    Abstract translation: 公开了用于识别至少一种木材种类的方法,系统和计算机程序。 特别地,该方法获取用于使用图像获取模块(IAM)分析图像的至少一种木材种类的图像(220)。 此外,该方法使用预处理模块(PPM)处理图像以提高所获取的图像的质量(230)。 此外,该方法提取处理图像的多个特征,以使用特征提取模块(FEM)(240)对至少一个图案进行分类。 此外,该方法使用模式分类模块(PCM)对用于识别至少一种木材种类的至少一种模式进行分类(250)。

    SPECTROSCOPIC SYSTEM AND METHOD FOR PREDICTING OUTCOME OF DISEASE
    85.
    发明申请
    SPECTROSCOPIC SYSTEM AND METHOD FOR PREDICTING OUTCOME OF DISEASE 审中-公开
    光谱学系统和预测疾病预测的方法

    公开(公告)号:WO2008100582A3

    公开(公告)日:2008-10-09

    申请号:PCT/US2008001988

    申请日:2008-02-14

    Abstract: A system and method to predict the progression of disease of a test sample is provided A group of known biological samples is provided, each having an associated known outcome including a non-diseased or diseased sample. A Raman data set is obtained for each known biological sample. Each data set is analyzed to identify a diseased or non-diseased reference data set. A first database is generated which contains reference Raman data sets for all diseased samples. A second-database is generated which contains reference data sets for all non-diseased samples. A test Raman data set of a test biological sample having an unknown disease status is received. A diagnostic is provided as to whether the test sample is non-diseased or diseased The diagnostic is obtained by comparing the test data set against the reference data sets in the databases using a chemometric technique to predict the progression of disease.

    Abstract translation: 提供了一种用于预测测试样品的疾病进展的系统和方法。提供了一组已知的生物样品,每个具有相关联的已知结果,包括非患病或患病样品。 获得每个已知生物样品的拉曼数据集。 分析每个数据集以识别患病或非患病参考数据集。 生成包含所有患病样本的参考拉曼数据集的第一个数据库。 生成包含所有非病变样本的参考数据集的第二数据库。 接收具有未知疾病状态的测试生物样品的测试拉曼数据集。 提供了关于测试样品是否患病或患病的诊断。诊断是通过使用化学计量技术比较测试数据集与数据库中的参考数据集来预测疾病进展而获得的。

    SPECTROSCOPIC SYSTEM AND METHOD FOR PREDICTING OUTCOME OF DISEASE
    86.
    发明申请
    SPECTROSCOPIC SYSTEM AND METHOD FOR PREDICTING OUTCOME OF DISEASE 审中-公开
    光谱学系统和预测疾病预测的方法

    公开(公告)号:WO2008100582A2

    公开(公告)日:2008-08-21

    申请号:PCT/US2008001988

    申请日:2008-02-14

    Abstract: A system and method to predict the progression of disease of a test sample. A group of known biological samples is provided. Each known biological sample has an associated known outcome including a non-diseased sample or a diseased sample. A Raman data set is obtained for each known biological sample. Each Raman data set is analyzed to identify a diseased or non-diseased reference Raman data set depending on whether respective biological sample is the non-diseased sample or the diseased sample. A first database is generated where the first database contains reference Raman data sets for all diseased samples. A second database is generated where the second database contains reference Raman data sets for all non-diseased samples. A test Raman data set of a test biological sample is received, where the test biological sample has an unknown disease status. A diagnostic is provided as to whether the test sample is a non-diseased sample or a diseased sample. The diagnostic is obtained by comparing the test Raman data set against the reference Raman data sets in the first and the second databases using a chemometric technique. A prediction of the progression of disease may be then provided.

    Abstract translation: 一种预测测试样本疾病进展的系统和方法。 提供了一组已知的生物样品。 每个已知的生物样品具有相关的已知结果,包括非患病样品或患病样品。 获得每个已知生物样品的拉曼数据集。 分析每个拉曼数据集,以根据相应的生物样品是非患病样品还是患病样品来鉴定患病或非患病参考拉曼数据集。 生成第一个数据库,其中第一个数据库包含所有患病样本的参考拉曼数据集。 生成第二数据库,其中第二数据库包含所有非患病样本的参考拉曼数据集。 接受测试生物样品的测试拉曼数据集,其中测试生物样品具有未知的疾病状态。 提供了关于测试样品是否是非患病样品或患病样品的诊断。 通过使用化学计量技术将测试拉曼数据集与第一和第二数据库中的参考拉曼数据集进行比较来获得诊断。 可以提供疾病进展的预测。

    METHOD AND APPARATUS FOR REMOVING NOISE FROM DATA

    公开(公告)号:US20240280474A1

    公开(公告)日:2024-08-22

    申请号:US18565310

    申请日:2022-06-06

    Applicant: RENISHAW plc

    Inventor: Ian Mac BELL

    CPC classification number: G01N21/274 G01N2201/127 G01N2201/1296

    Abstract: A method for removing noise from spectral data recorded using a spectrometer. The method includes normalising spectral data to generate normalised spectral data and applying a machine learning model to the normalised spectral data. The machine learning model is trained to remove noise from spectral data using normalised training data, wherein the spectral data is normalised based on a different scaling to the normalisation of the training data.

Patent Agency Ranking