Abstract:
An optical device (1), comprising a first optical transparent thermoplastic layer (2), a second optical transparent thermoplastic layer (3), and in between both thermoplastic layers (2,3), a diffractive optical element (4) adjacent to one thermoplastic layer (2), a spacer (5) in between the diffractive optical element (4) and the other thermoplastic layer (3) and, a border (6) enclosing the diffractive element (4) thereby forming a sealed cavity (7).
Abstract:
Diffraction grating-based backlighting having controlled diffractive coupling efficiency includes a light guide and a plurality of diffraction gratings at a surface of the light guide. The light guide is to guide light and the diffraction gratings are to couple out a portion of the guided light using diffractive coupling and to direct the coupled-out portion away from the light guide surface as a plurality of light beams at a principal angular direction. Diffraction gratings of the plurality include diffractive features having a diffractive feature modulation configured to selectively control a diffractive coupling efficiency of the diffraction gratings as a function of distance along the light guide surface.
Abstract:
Multi-colored pixelated displays are provided where a sparkle reduction surface comprising a micron grade diffraction element is positioned between the image display element and the display surface. More specifically, in accordance with one embodiment of the present disclosure, a multi-colored pixelated display is provided comprising an image display element and a transparent display cover. The image display element comprises an array of display pixels divided into a plurality of display sub-pixels associated with respective dedicated display color components. The transparent display cover comprises a display surface that is susceptible to marking and a sparkle reduction surface. The sparkle reduction surface is positioned between the image display element and the display surface along an optical path of the pixelated display and is spaced from the image display element by an optical distance D. The sparkle reduction surface comprises a micron grade diffraction element.
Abstract:
A device for frequency conversion of a first laser beam (6) generated with a first frequency (ω 1 ) by a laser beam source (4) comprises: a) an optically non-linear first crystal (2) for generating a second laser beam (8) having a second frequency (ω 2 ), which differs from the first frequency (ω 1 ), said second laser beam propagating parallel to the first laser beam (6) after leaving the first optically non-linear crystal (2), b) an optically non-linear second crystal (10), which generates from the first and second laser beams (6, 8) at least one third laser beam (18) having a third frequency (ω 3 ), which differs from the first frequency (ω 1 ) and the second frequency (ω 2 ), c) an optical deflection device (12) for influencing the relative beam position between first and second laser beams (6, 8) in such a way that d) first and second laser beams (6, 8), before entering into the second crystal (10), propagate at an angle (a) with respect to one another, which angle differs from zero, and e) enter in a manner spaced apart from one another at an entrance surface (16) of the second crystal (10) and intersect within the second crystal (10) with at the same time collinear phase matching, wherein f) the entrance surface (16) of the second crystal (10) is inclined at a wedge angle (γ) which differs from 0° with respect to two mutually parallel, mutually opposite side surfaces (17) of the second crystal (10).
Abstract:
A liquid crystal device includes a first polarization grating, a second polarization grating, and a liquid crystal layer. The first polarization grating is configured to polarize and diffract incident light into first and second beams having different polarizations and different directions of propagation relative to that of the incident light. The liquid crystal layer is configured to receive the first and second beams from the first polarization grating. The liquid crystal layer is configured to be switched between a first state that does not substantially affect respective polarizations of the first and second beams traveling therethrough, and a second state that alters the respective polarizations of the first and second beams traveling therethrough. The second polarization grating is configured to analyze and diffract the first and second beams from the liquid crystal layer to alter the different directions of propagation thereof in response to the state of the liquid crystal layer. Related devices are also discussed.
Abstract:
Die Erfindung bezieht sich auf ein Element eines Flüssigkristall-Displays mit einer Eingangsmaske mit Spalten, einem Raster-Linsenkondensator sowie einer zwischen zwei transparenten Trägern eingebetteten Schicht des Flüssigkristalls. Die Träger sind mit transparenten Elektroden und Orientierungsschichten versehen, einem Raster-Linsenobjektiv, einer Ausgangsmaske mit Spalten, deren Lage mit der Lage der Spalten der Eingangsmaske abgestimmt ist. Die Fläche des Elements ist in drei Teilbereiche derart aufgeteilt, dass eine Phasen-Beugungsstruktur in der Schicht des Flüssigkristalls möglich ist. Die Orientierungsschichten sind dadurch gekennzeichnet, dass sie aus einem Fotopolymer bestehen und dass die Phasen-Beugungsstruktur durch die Bereiche des Flüssigkristalls mit unterschiedlicher Ausgangsorientierung gebildet ist, die durch eine unterschiedliche Richtung der Polarisationsebene bei der Belichtung des Fotopolymers bedingt ist. Die Periode der Bereiche mit verschiedener Orientierung ist in jedem der Teilbereiche gleich und die gegenseitige Spaltenlage der Ausgangsmaske ist bezüglich der Spalten der Eingangsmaske innerhalb jedes Teilbereichs unterschiedlich, wobei der Durchlass einer in jedem Teilbereich unterschiedlichen Farbe von drei primären Farben innerhalb jedes Teilbereichs gewährleistet ist.
Abstract:
A grating alignment device performs alignment of two or more plane gratings so as to eliminate an angular misalignment and a phase misalignment which are caused between respective diffracted light beams generated when incident light is diffracted by the plane gratings. Specifically, alignment is performed by appropriately adjusting an angle A, an angle B, an angle C, a coordinate Z, and a coordinate X of the second plane grating so as to eliminate at least one of the angular misalignment and the phase misalignment which are caused between the respective diffracted light beams generated when incident light is diffracted by the first plane grating and the second plane grating.