Abstract:
The invention relates to an optical rejection filter (2) comprising a liquid crystal cell, comprising: - a liquid crystal mixture (22) comprising cholesteric liquid crystals, - two alignment layers (20, 21) encasing the liquid crystal mixture, the liquid crystal mixture being capable of reflecting rays of light incoming on a surface of the cell by Bragg reflection, the wavelength of the reflected rays depending on the angle of incidence of the rays on the surface of the cell and on the pitch of the helices of the liquid crystals molecules, wherein for each point of coordinates (x,y) of the cell is defined a pitch of the helices of the liquid crystal molecules, and the pitch varies along at least one direction within the cell, such that the cell comprises at least two points reflecting the same wavelength of two rays of light incoming on the respective points of the surface with different angles of incidence.
Abstract:
Liquid crystal modulator optical devices and more specifically shutters and smart windows are presented. The liquid crystal modulator devices are characterized by a reduced polymer content which is eliminated from the material composition of the liquid crystal layer and characterized by non-uniform electrode structures in the liquid crystal structure configured to generate spatially non-uniform electric fields and therefore non-uniform molecular reorientation of liquid crystal molecules. This arrangement advantageously makes light scattering electrically controllable.
Abstract:
A structural interface having an adaptive liquid crystal material that is positioned to receive electromagnetic radiation and adapted to reflect a selective band of the received electromagnetic radiation so as to help with cooling of a structure in the summer and/or heating of the structure in the winter. The adaptive liquid crystal material is designed to change its selective reflection band when exposed to an activating temperature or an activating light or both. Depending on the interior and/or exterior conditions, the adaptive liquid crystal material has one or more selective reflection bands with a peak wavelength selected from the following: within a sunlight wavelength span, outside a thermal infrared wavelength span, outside the sunlight wavelength span, or within the thermal infrared wavelength span. The structural interface may be applied to an exterior or interior surface of a structural envelop or be integrated into a structural envelope material.
Abstract:
A display sheet comprising a substrate carrying layers of material; including a polymer-dispersed cholesteric liquid-crystal layer having a first high reflection state within a portion of the visible light spectrum and a second less-reflective state in said spectrum, said states being changeable by electric field between the two states which states can be maintained in the absence of an electric field; a first transparent conductor disposed over the polymer-dispersed cholesteric liquid-crystal layer; a complementary light-absorbing layer below the polymer-dispersed cholesteric liquid-crystal layer having relatively high light absorption within the spectrum of the high-reflection state of the polymer-dispersed cholesteric liquid-crystal layer and having relatively less light absorption in the spectrum complementary to that of the high reflection state of the polymer-dispersed cholesteric liquid-crystal layer; and a reflective second conductor under said complementary light-absorbing layer reflecting light received from the complementary light-absorbing layer back through the complementary light-absorbing layer.
Abstract:
The invention relates to a reflective flat-panel color display device (1) having a diffusing display panel (3). The display panel (3) comprises a diffusing liquid crystalline material (5) present between a first and a second substrate (7, 9). A color filter pattern (15) which corresponds to the pixel pattern of the display panel (3) is present between the liquid crystalline material (5) and the second substrate (9). A diffusing reflector is present at the side of the color filter pattern (15) remote from the liquid crystalline material (5). In another embodiment, a reflector (17), which has a diffusing or non-diffusing effect, is present outside the display panel (3) and a forward diffuser (33) is arranged between this reflector (17) and the display panel (3).
Abstract:
Provided are a decorative film including a base material and a reflective layer having a convex structure, in which, in a cross section obtained by cutting the convex structure in a direction perpendicular to a plane direction of the decorative film, in a case where a direction in which an average ΦAVE of positive tilt angles is a largest is defined as a first direction and a direction in which the average ΦAVE of the positive tilt angles is a smallest is defined as a second direction, the decorative film has a region A in which ΦAVE in the first direction is 3° or more and ΦAVE in the second direction is less than 3°; and applications thereof.
Abstract:
There is provided a composition containing a discotic liquid crystal compound, a chiral agent, and a surfactant which can form a light reflecting layer formed by fixing a cholesteric liquid crystalline phase, which exhibits excellent durability under a hot and humid environment and excellent heat resistance, and has few alignment defects; a light reflecting film; a luminance-improving film; a backlight unit; and a liquid crystal display device.
Abstract:
A cholesteric liquid-crystal mixture containing a compound represented by the general formula (Ia), a compound represented by the general formula (Ib), a fluorine-containing horizontal alignment agent and a polymerization initiator is capable of forming a film which is prevented from precipitation of liquid-crystal compounds therein, of which the haze is reduced and which has a broad reflection width. Z1—Y1-A1-Y3-M1-Y4-A2-Y2—Z2 General Formula (Ia) Z3—Y5-A3-Y7-M2-P General Formula (Ib)
Abstract:
A structural interface having an adaptive liquid crystal material that is positioned to receive electromagnetic radiation and adapted to reflect a selective band of the received electromagnetic radiation so as to help with cooling of a structure in the summer and/or heating of the structure in the winter. The adaptive liquid crystal material is designed to change its selective reflection band when exposed to an activating temperature or an activating light or both. Depending on the interior and/or exterior conditions, the adaptive liquid crystal material has one or more selective reflection bands with a peak wavelength selected from the following: within a sunlight wavelength span, outside a thermal infrared wavelength span, outside the sunlight wavelength span, or within the thermal infrared wavelength span. The structural interface may be applied to an exterior or interior surface of a structural envelop or be integrated into a structural envelope material.
Abstract:
An identification medium cannot be reused when an attempt has been made to remove it from an object by using solvent. A cholesteric liquid crystal layer subjected to a hologram processing is formed while contacting a COP (cycloolefin polymer) layer. When the identification medium is removed using a solvent from a state in which it was adhered to an object by an adhesive layer, the COP layer is melted by the solvent and is damaged. The COP layer is a layer which functions as a substrate of the identification medium, and the identification medium is damaged by contacting with the solvent, as described above, and it is difficult to reuse.