Abstract:
A structural interface having an adaptive liquid crystal material that is positioned to receive electromagnetic radiation and adapted to reflect a selective band of the received electromagnetic radiation so as to help with cooling of a structure in the summer and/or heating of the structure in the winter. The adaptive liquid crystal material is designed to change its selective reflection band when exposed to an activating temperature or an activating light or both. Depending on the interior and/or exterior conditions, the adaptive liquid crystal material has one or more selective reflection bands with a peak wavelength selected from the following: within a sunlight wavelength span, outside a thermal infrared wavelength span, outside the sunlight wavelength span, or within the thermal infrared wavelength span. The structural interface may be applied to an exterior or interior surface of a structural envelop or be integrated into a structural envelope material.
Abstract:
Provided is a flexible cell unit and a method of manufacturing the same. The cell unit includes first and second substrates separated by a controlled distance maintained by spacers, filled with an electro-optic material and enclosed by a border seal. The method includes providing two sheets to form the first and second substrates, where at least one of the sheets is flexible, depositing an electro-optic material on at least one substrate, and roll-filling the cell by using one or more lamination rollers to pair the first and second substrates to within the controlled distance of each other and filling the controlled distance with the electro-optic material.
Abstract:
Provided is a liquid crystal light variable device having a liquid crystal cell, comprising a mixture of a liquid crystal material and one or more dichroic dyes interposed between a first and a second substrate, each substrate having a conductive layer disposed thereon. The device further includes a voltage supply or controller coupled with the conductive layers for application of a voltage waveform across the liquid crystal cell. The liquid crystal cell is configured so that based on the voltage waveform applied, the device transitions between a low-haze low-tint state (“clear state”), a low-haze high-tint state (“tinted state”), and a high-haze high-tint state (“opaque state”). The high-haze state is caused by dynamic scattering in the liquid crystal-dye mixture.
Abstract:
A structural interface having an adaptive liquid crystal material that is positioned to receive electromagnetic radiation and adapted to reflect a selective band of the received electromagnetic radiation so as to help with cooling of a structure in the summer and/or heating of the structure in the winter. The adaptive liquid crystal material is designed to change its selective reflection band when exposed to an activating temperature or an activating light or both. Depending on the interior and/or exterior conditions, the adaptive liquid crystal material has one or more selective reflection bands with a peak wavelength selected from the following: within a sunlight wavelength span, outside a thermal infrared wavelength span, outside the sunlight wavelength span, or within the thermal infrared wavelength span. The structural interface may be applied to an exterior or interior surface of a structural envelop or be integrated into a structural envelope material.
Abstract:
A light emitting photonic bandgap (PBG) material, and devices uses the same, having (a) a polymer network exhibiting a non-uniform pitch; (b) a small molecule liquid crystal material with a birefringence >0.04; and (c) one or more light emitting dyes having a low triplet state absorption. The light emitting PBG material has a defect-induced density of states enhancing feature at a wavelength that overlaps the emission spectrum of the light emitting dye. Excitation of the light emitting PBG material by a light source causes a directional electromagnetic emission from the light emitting material. The PBG material, and device, are capable of emitting continuous wave laser light as a result of excitation by a low-power incoherent light source.
Abstract:
Provided is a flexible cell unit and a method of manufacturing the same. The cell unit includes first and second substrates separated by a controlled distance maintained by spacers, filled with an electro-optic material and enclosed by a border seal. The method includes providing two sheets to form the first and second substrates, where at least one of the sheets is flexible, depositing an electro-optic material on at least one substrate, and roll-filling the cell by using one or more lamination rollers to pair the first and second substrates to within the controlled distance of each other and filling the controlled distance with the electro-optic material.
Abstract:
A light emitting photonic bandgap (PBG) material, and devices uses the same, having (a) a polymer network exhibiting a non-uniform pitch; (b) a small molecule liquid crystal material with a birefringence>0.04; and (c) one or more light emitting dyes having a low triplet state absorption. The light emitting PBG material has a defect-induced density of states enhancing feature at a wavelength that overlaps the emission spectrum of the light emitting dye. Excitation of the light emitting PBG material by a light source causes a directional electromagnetic emission from the light emitting material. The PBG material, and device, are capable of emitting continuous wave laser light as a result of excitation by a low-power incoherent light source.