Abstract:
Provided are a sand blasting abrasive material and a sand blasting method for a wafer using the same, which can prevent contamination of the wafer by a metal ion from occurring. A silicon wafer is sand blasted using a sand blasting abrasive material containing a chelating agent. The chelating agent is selected from the group consisting of, for example, the following compounds (1) to (4) and salts thereof:
Abstract:
A thermal plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar thermal zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. Each planar thermal zone uses at least one Peltier device as a thermoelectric element. A substrate support assembly in which the thermal plate is incorporated includes an electrostatic clamping electrode layer and a temperature controlled base plate. Methods for manufacturing the thermal plate include bonding together ceramic or polymer sheets having planar thermal zones, positive, negative and common lines and vias.
Abstract:
Forming a porous layer on a silicon substrate is disclosed. Forming the porous layer can include placing a silicon substrate in a first solution and conducting a first current through the silicon substrate. It can further include conducting a second current through the silicon substrate resulting in a porous layer on the silicon substrate.
Abstract:
The invention provides, in one instance, a group III nitride wafer sliced from a group III nitride ingot, polished to remove the surface damage layer and tested with x-ray diffraction. The x-ray incident beam is irradiated at an angle less than 15 degree and diffraction peak intensity is evaluated. The group III nitride wafer passing this test has sufficient surface quality for device fabrication. The invention also provides, in one instance, a method of producing group III nitride wafer by slicing a group III nitride ingot, polishing at least one surface of the wafer, and testing the surface quality with x-ray diffraction having an incident beam angle less than 15 degree to the surface. The invention also provides, in an instance, a test method for testing the surface quality of group III nitride wafers using x-ray diffraction having an incident beam angle less than 15 degree to the surface.
Abstract:
A method for temporary bonding first (20) and second (30) wafers includes, applying a first adhesive layer (23a) upon a first surface of a first wafer (20) and then curing the first adhesive layer. Next, applying a second adhesive layer (23b) upon a first surface of a second wafer (30). Next, inserting the first wafer into a bonder module and holding the first wafer by an upper chuck assembly (412) so that its first surface with the cured first adhesive layer faces down. Next, inserting the second wafer into the bonder module and placing the second wafer upon a lower chuck assembly (414) so that the second adhesive layer faces up and is opposite to the first adhesive layer. Next, moving the lower chuck assembly upwards and bringing the second adhesive layer in contact with the cured first adhesive layer, and then curing the second adhesive layer.
Abstract:
This method for estimating the depth of latent scratches in SiC substrates includes an etching step, a measurement step, and an estimation step. In the etching step, a SiC substrate in which at least the surface is formed from single crystal SiC, and which has been subjected to machining, is subjected to heat treatment under Si atmosphere to etch the surface of the SiC substrate. In the measurement step, the surface roughness or the residual stress of the SiC substrate which has been subjected to the etching step is measured. In the estimation step, the depth of latent scratches or the presence or absence of latent scratches in the SiC substrate before the etching step are estimated on the basis of the results obtained in the measurement step.
Abstract:
In a silicon wafer which has a surface with a plurality of terraces formed stepwise by single-atomic-layer steps, respectively, no slip line is formed.
Abstract:
Reducing the microvoid (MV) density in AlN ameliorates numerous problems related to cracking during crystal growth, etch pit generation during the polishing, reduction of the optical transparency in an AlN wafer, and, possibly, growth pit formation during epitaxial growth of AlN and/or AlGaN. This facilitates practical crystal production strategies and the formation of large, bulk AlN crystals with low defect densities—e.g., a dislocation density below 104 cm−2 and an inclusion density below 104 cm−3 and/or a MV density below 104 cm−3.