Abstract:
A method for fabricating an object to attenuate thermal sensation when handling the object at non-body temperature, and an object fabricated in accord with the method. There is first provided a substrate which has a first surface subject to handling. There is then formed upon the first surface of the substrate a coating. The coating has an optimal density, an optimal thermal conductivity and an optimal thickness such that when the substrate having the coating formed thereupon is equilibrated at a non-body temperature differing from a body temperature and the coating is subsequently contacted with a body at the body temperature during handling, the temperature of the surface of the coating at a contact point of the body with the coating changes precipitously to a temperature near the body temperature and subsequently returns towards the non-body temperature at a rate which permits handling of the coating at the location of the first surface of the substrate by the body with attenuated thermal sensation. The coating simultaneously also minimally attenuates a steady state thermal transfer with respect to the substrate in comparison with an otherwise equivalent substrate absent the coating.
Abstract:
A method for producing an organic electroluminescent device, which is provided with first electrodes formed on a substrate, a thin film layer formed on the first electrode containing at least an emitting layer composed of an organic compound and a plurality of second electrodes formed on the thin film layer, and has a plurality of luminescent regions on said substrate, comprising the steps of forming spacers having a height at least partially exceeding the thickness of said thin film layer on the substrate, and vapor-depositing a deposit for patterning while the shadow mask having reinforcing lines formed across its apertures is kept in contact with said spacers. Highly precise fine patterning can be effected under wide vapor deposition conditions without degrading the properties of organic electroluminescent elements, and high stability can be achieved by a relatively simple process without limiting the structure of the electroluminescent device.
Abstract:
A method of surface treatment for a lens of a vehicle lamp. The method comprises forming a hard coating film on a outer surface of the lens by heating to harden after the hard coating film is applied onto the outer surface of the lens; cooling the lens formed with the hard coating film until the inner surface of the lens has a predetermined temperature; and forming a antifogging coating film on a inner surface of the lens by heating to dry after the antifogging coating film is applied onto the inner surface of the lens.
Abstract:
The present invention provides a process for providing on the surface of a substrate a chemically bonded, densely-packed, oriented organic acid-based mono-layer, the method comprising: (i) providing on at least a portion of said surface of said substrate a densely-packed, adsorbed oriented mono-layer comprising a plurality of at least one organic acid species wherein each of the organic acid species comprising said adsorbed mono-layer has at least one acid functional group associated with said surface of said substrate; and (ii) bonding to the surface of said substrate said surface-associated acid functional groups.
Abstract:
A substrate treating method for performing a predetermined treatment of substrates as immersed in a treating liquid stored in a treating tank. The method includes a first step of deriving a current treating rate from a relationship between use history and treating rate of the treating liquid and an up-to-date use history of the treating liquid, a second step of determining a corrected treating time by extending a predetermined treating time according to the current treating rate, and a third step of treating the substrates for the corrected treating time.
Abstract:
Distortions generated at ear portions of films at shorter sides of a resin film coated heat insulating/sound absorbing material can be eliminated. When the front and rear surfaces and both side surfaces in the direction of longer sides of the inorganic fiber mats are covered with band shaped resin films in a state that a predetermined spacing is provided between the mats, and the resin films are cut at a portion between the mats by a cutting blade along a direction of shorter sides in a state that the films are pressed by a pressing member 1, the resin films are pressed by a pressing member 1 having film setting portions 2 at both ends of its bottom surface, whereby the slopes 4 of the film setting portions 2 prevent the ear portions of the resin films at the cutting portion from spreading sideways.
Abstract:
Processes for depositing nanowires on a substrate and nanowire-based devices that can be formed using these processes are described. In one embodiment, a process includes forming an organic layer on an electrically conductive layer formed on the substrate. The organic layer includes a first region and a second region. The first region has an affinity for the nanowires and is electrically conductive. The process also includes contacting the organic layer with a composition including the nanowires dispersed in a compatible solvent for a time sufficient to selectively deposit at least one of the nanowires on the first region of the organic layer.
Abstract:
An artificial stone veneer product has a thin substrate covered by a stone veneer having a pitted, uneven surface having an appearance similar to travertine. To make the product, layers of polymer resin and particulate matter are applied to a substrate. A thin layer of polymer resin is first applied to the substrate, followed by a layer of fine particulate matter that at least partially settles into the resin, and the resin is allowed to set partially. Another layer of polymer resin is applied to the underlying layers in a nonuniform manner over the underlying layers, resulting in a moderately porous layer having randomly located voids of varying size and shape. A final layer of particulate matter is then applied over the polymer layer, and the resin is allowed to set completely. In an optional step, the surface of the final product is finished to smooth it, during which some of the larger particulate matter is dislodged and removed, enhancing the uneven rough appearance of the veneer.
Abstract:
A direct-write method and apparatus for depositing a functional material with a preferred orientation onto a target surface. The method comprises the following steps: (1) forming a precursor fluid to the functional material, with the fluid containing a liquid component; (2) operating a dispensing device to discharge and deposit the precursor fluid onto the target surface in a substantially point-by-point manner and at least partially removing the liquid component from the deposited fluid to form a thin layer of the functional material which is substantially solidified and is of a predetermined pattern; and (3) during the liquid-removing step, subjecting the deposited fluid to a highly localized electric or magnetic field for poling until a preferred orientation is attained in the deposited functional material. The invention also provides a freeform fabrication method for building a multi-layer device, such as a micro-electro-mechanical system (MEMS), which contains sensor and actuator elements that exhibits piezoelectric, pyroelectric, ferromagnetic, electro-optic and/or other functional properties.
Abstract:
A method of preparing a substrate material such that it is capable of sponsoring a catalytic reaction over a pre-determined area of its surface comprising coating some or all of the substrate material with a catalytic material which is capable, once the coated substrate is introduced into a suitable catalytic reaction environment, of sponsoring a catalytic reaction over the coated areas of the substrate wherein the catalytic material is printed onto the substrate by a pattern transfer mechanism.